Spaces:
Running
Running
import re | |
import re | |
from sentence_transformers import SentenceTransformer, util | |
import re | |
from unidecode import unidecode | |
from transformers import AutoTokenizer | |
import yaml | |
import fitz | |
def remove_accents(input_str): | |
text_no_accents = unidecode(input_str) | |
return text_no_accents | |
def remove_special_characters(text): | |
text = text.replace("<s>", "").replace("</s>", "") | |
text = remove_accents(text) | |
pattern = r'[^\w\s\d.,!?\'"()-;]+' | |
text = re.sub(pattern, "", text) | |
return text | |
def remove_special_characters_2(text): | |
pattern = r"[^a-zA-Z0-9 ]+" | |
text = re.sub(pattern, "", text) | |
return text | |
def update_character_count(text): | |
return f"{len(text)} characters" | |
with open("config.yaml", "r") as file: | |
params = yaml.safe_load(file) | |
text_bc_model_path = params["TEXT_BC_MODEL_PATH"] | |
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path) | |
def len_validator(text): | |
min_tokens = 200 | |
lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt")) | |
if lengt < min_tokens: | |
return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens." | |
else: | |
return f"Input length ({lengt}) is satisified." | |
def extract_text_from_pdf(pdf_path): | |
doc = fitz.open(pdf_path) | |
text = "" | |
for page in doc: | |
text += page.get_text() | |
return text | |
WORD = re.compile(r"\w+") | |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |