Spaces:
Running
Running
from lime.lime_text import LimeTextExplainer | |
from nltk.tokenize import sent_tokenize | |
from predictors import predict_for_explainanility | |
def explainer(text, model_type): | |
def predictor_wrapper(text): | |
return predict_for_explainanility(text=text, model_type=model_type) | |
class_names = ["negative", "positive"] | |
explainer_ = LimeTextExplainer( | |
class_names=class_names, split_expression=sent_tokenize | |
) | |
sentences = [sent for sent in sent_tokenize(text)] | |
num_sentences = len(sentences) | |
exp = explainer_.explain_instance( | |
text, predictor_wrapper, num_features=num_sentences, num_samples=500 | |
) | |
weights_mapping = exp.as_map()[1] | |
sentences_weights = {sentence: 0 for sentence in sentences} | |
for idx, weight in weights_mapping: | |
if 0 <= idx < len(sentences): | |
sentences_weights[sentences[idx]] = weight | |
print(sentences_weights, model_type) | |
return sentences_weights, exp | |
def analyze_and_highlight(text, model_type): | |
highlighted_text = "" | |
sentences_weights, _ = explainer(text, model_type) | |
min_weight = min(sentences_weights.values()) | |
max_weight = max(sentences_weights.values()) | |
for sentence, weight in sentences_weights.items(): | |
normalized_weight = (weight - min_weight) / (max_weight - min_weight) | |
if weight >= 0: | |
color = f"rgba(255, {255 * (1 - normalized_weight)}, {255 * (1 - normalized_weight)}, 1)" | |
else: | |
color = ( | |
f"rgba({255 * normalized_weight}, 255, {255 * normalized_weight}, 1)" | |
) | |
sentence = sentence.strip() | |
if not sentence: | |
continue | |
highlighted_sentence = ( | |
f'<span style="background-color: {color}; color: black;">{sentence}</span> ' | |
) | |
highlighted_text += highlighted_sentence | |
return highlighted_text | |