Spaces:
Runtime error
Runtime error
Delete explainability.py
Browse files- explainability.py +0 -98
explainability.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import re, textstat
|
2 |
-
from nltk import FreqDist
|
3 |
-
from nltk.corpus import stopwords
|
4 |
-
from nltk.tokenize import word_tokenize, sent_tokenize
|
5 |
-
import torch
|
6 |
-
import nltk
|
7 |
-
from tqdm import tqdm
|
8 |
-
|
9 |
-
nltk.download('punkt')
|
10 |
-
|
11 |
-
def normalize(value, min_value, max_value):
|
12 |
-
normalized_value = ((value - min_value) * 100) / (max_value - min_value)
|
13 |
-
return max(0, min(100, normalized_value))
|
14 |
-
|
15 |
-
def preprocess_text1(text):
|
16 |
-
text = text.lower()
|
17 |
-
text = re.sub(r'[^\w\s]', '', text) # remove punctuation
|
18 |
-
stop_words = set(stopwords.words('english')) # remove stopwords
|
19 |
-
words = [word for word in text.split() if word not in stop_words]
|
20 |
-
words = [word for word in words if not word.isdigit()] # remove numbers
|
21 |
-
return words
|
22 |
-
|
23 |
-
def vocabulary_richness_ttr(words):
|
24 |
-
unique_words = set(words)
|
25 |
-
ttr = len(unique_words) / len(words) * 100
|
26 |
-
return ttr
|
27 |
-
|
28 |
-
def calculate_gunning_fog(text):
|
29 |
-
"""range 0-20"""
|
30 |
-
gunning_fog = textstat.gunning_fog(text)
|
31 |
-
return gunning_fog
|
32 |
-
|
33 |
-
def calculate_automated_readability_index(text):
|
34 |
-
"""range 1-20"""
|
35 |
-
ari = textstat.automated_readability_index(text)
|
36 |
-
return ari
|
37 |
-
|
38 |
-
def calculate_flesch_reading_ease(text):
|
39 |
-
"""range 0-100"""
|
40 |
-
fre = textstat.flesch_reading_ease(text)
|
41 |
-
return fre
|
42 |
-
|
43 |
-
def preprocess_text2(text):
|
44 |
-
sentences = sent_tokenize(text)
|
45 |
-
words = [word.lower() for sent in sentences for word in word_tokenize(sent) if word.isalnum()]
|
46 |
-
stop_words = set(stopwords.words('english'))
|
47 |
-
words = [word for word in words if word not in stop_words]
|
48 |
-
return words, sentences
|
49 |
-
|
50 |
-
def calculate_average_sentence_length(sentences):
|
51 |
-
"""range 0-40 or 50 based on the histogram"""
|
52 |
-
total_words = sum(len(word_tokenize(sent)) for sent in sentences)
|
53 |
-
average_sentence_length = total_words / (len(sentences) + 0.0000001)
|
54 |
-
return average_sentence_length
|
55 |
-
|
56 |
-
def calculate_average_word_length(words):
|
57 |
-
"""range 0-8 based on the histogram"""
|
58 |
-
total_characters = sum(len(word) for word in words)
|
59 |
-
average_word_length = total_characters / (len(words) + 0.0000001)
|
60 |
-
return average_word_length
|
61 |
-
|
62 |
-
def calculate_max_depth(sent):
|
63 |
-
return max(len(list(token.ancestors)) for token in sent)
|
64 |
-
|
65 |
-
def calculate_syntactic_tree_depth(nlp, text):
|
66 |
-
"""0-10 based on the histogram"""
|
67 |
-
doc = nlp(text)
|
68 |
-
sentence_depths = [calculate_max_depth(sent) for sent in doc.sents]
|
69 |
-
average_depth = sum(sentence_depths) / len(sentence_depths) if sentence_depths else 0
|
70 |
-
return average_depth
|
71 |
-
|
72 |
-
def calculate_perplexity(text, model, tokenizer, device, stride=512):
|
73 |
-
"""range 0-30 based on the histogram"""
|
74 |
-
encodings = tokenizer(text, return_tensors="pt")
|
75 |
-
max_length = model.config.n_positions
|
76 |
-
seq_len = encodings.input_ids.size(1)
|
77 |
-
|
78 |
-
nlls = []
|
79 |
-
prev_end_loc = 0
|
80 |
-
for begin_loc in tqdm(range(0, seq_len, stride)):
|
81 |
-
end_loc = min(begin_loc + max_length, seq_len)
|
82 |
-
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
|
83 |
-
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
|
84 |
-
target_ids = input_ids.clone()
|
85 |
-
target_ids[:, :-trg_len] = -100
|
86 |
-
|
87 |
-
with torch.no_grad():
|
88 |
-
outputs = model(input_ids, labels=target_ids)
|
89 |
-
neg_log_likelihood = outputs.loss
|
90 |
-
|
91 |
-
nlls.append(neg_log_likelihood)
|
92 |
-
|
93 |
-
prev_end_loc = end_loc
|
94 |
-
if end_loc == seq_len:
|
95 |
-
break
|
96 |
-
|
97 |
-
ppl = torch.exp(torch.stack(nlls).mean())
|
98 |
-
return ppl.item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|