TomSmail's picture
feat: add defaults
75af700
raw
history blame
13.4 kB
from pathlib import Path
import numpy as np
import gradio as gr
import requests
import json
from transformers import ViTImageProcessor, ViTModel
from PIL import Image
# Store the server's URL
SERVER_URL = "https://ppaihack-match.azurewebsites.net/"
CURRENT_DIR = Path(__file__).parent
DEPLOYMENT_DIR = CURRENT_DIR / "deployment_files"
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys"
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir"
SERVER_DIR = DEPLOYMENT_DIR / "server_dir"
USER_ID = "user_id"
EXAMPLE_CLINICAL_TRIAL_LINK = "https://www.trials4us.co.uk/ongoing-clinical-trials/recruiting-healthy-adults-c23026?_gl=1*1ysp815*_up*MQ..&gclid=Cj0KCQjwr9m3BhDHARIsANut04bHqi5zE3sjS3f8JK2WRN3YEgY4bTfWbvTdZTxkUTSISxXX5ZWL7qEaAowwEALw_wcB&gbraid=0AAAAAD3Qci2k_3IERmM6U1FGDuYVayZWH"
# Define possible categories for fields without predefined categories
additional_categories = {
"Gender": ["Male", "Female", "Other"],
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
"Smoking_Status": ["Never", "Former", "Current"],
"Diagnoses_ICD10": ["Actinic keratosis", "Melanoma", "Dermatofibroma", "Vascular lesion","None"],
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
"Functional_Status": ["Independent", "Assisted", "Dependent"],
"Previous_Trial_Participation": ["Yes", "No"]
}
# Define the input components for the form
age_input = gr.Slider(minimum=18, maximum=100, label="Age ", step=1, value=30)
gender_input = gr.Radio(choices=additional_categories["Gender"], label="Gender", value="Male")
ethnicity_input = gr.Radio(choices=additional_categories["Ethnicity"], label="Ethnicity", value="White")
geographic_location_input = gr.Radio(choices=additional_categories["Geographic_Location"], label="Geographic Location", value="North America")
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications", value=["Metformin"])
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies", value=["Peanuts"])
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments", value=["None"])
blood_glucose_level_input = gr.Slider(minimum=0, maximum=300, label="Blood Glucose Level", step=1, value=100)
blood_pressure_systolic_input = gr.Slider(minimum=80, maximum=200, label="Blood Pressure (Systolic)", step=1, value=120)
blood_pressure_diastolic_input = gr.Slider(minimum=40, maximum=120, label="Blood Pressure (Diastolic)", step=1, value=80)
bmi_input = gr.Slider(minimum=10, maximum=50, label="BMI ", step=1, value=20)
smoking_status_input = gr.Radio(choices=additional_categories["Smoking_Status"], label="Smoking Status", value="Never")
alcohol_consumption_input = gr.Radio(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption", value="None")
exercise_habits_input = gr.Radio(choices=additional_categories["Exercise_Habits"], label="Exercise Habits", value="Sedentary")
diet_input = gr.Radio(choices=additional_categories["Diet"], label="Diet", value="Omnivore")
condition_severity_input = gr.Slider(minimum=1, maximum=10, label="Condition Severity", step=1, value=5)
functional_status_input = gr.Radio(choices=additional_categories["Functional_Status"], label="Functional Status", value="Independent")
previous_trial_participation_input = gr.Radio(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation", value="No")
# def encrypt_array(user_symptoms: np.ndarray, user_id: str) -> bytes:
# """
# Encrypt the user symptoms vector.
# Args:
# user_symptoms (np.ndarray): The vector of symptoms provided by the user.
# user_id (str): The current user's ID.
# Returns:
# bytes: Encrypted and serialized symptoms.
# """
# # Retrieve the client API
# client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
# client.load()
# # Ensure the symptoms are properly formatted as an array
# user_symptoms = np.array(user_symptoms).reshape(1, -1)
# # Encrypt and serialize the symptoms
# encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
# # Ensure the encryption process returned bytes
# assert isinstance(encrypted_quantized_user_symptoms, bytes)
# # Save the encrypted data to a file (optional)
# encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"
# with encrypted_input_path.open("wb") as f:
# f.write(encrypted_quantized_user_symptoms)
# # Return the encrypted data
# return encrypted_quantized_user_symptoms
# def decrypt_result(encrypted_answer: bytes, user_id: str) -> bool:
"""
Decrypt the encrypted result.
Args:
encrypted_answer (bytes): The encrypted result.
user_id (str): The current user's ID.
Returns:
bool: The decrypted result.
"""
# Retrieve the client API
# client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
# client.load()
# Decrypt the result
# decrypted_result = client.decrypt_deserialize(encrypted_answer)
# # Return the decrypted result
# return decrypted_result
def encode_categorical_data(data):
categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"]
encoded_data = []
for i in range(len(categories)):
sub_cats = additional_categories[categories[i]]
if data[i] in sub_cats:
encoded_data.append(sub_cats.index(data[i]) + 1)
else:
encoded_data.append(0)
return encoded_data
def clear_data_to_json(data):
print(data)
patient_data = {
"model_names": ["my_model"],
"patient": {
"Age": data.get("age", 30),
"Blood_Glucose_Level": data.get("blood_glucose_level", 0),
"Blood_Pressure_Systolic": data.get("blood_pressure_systolic", 0),
"Blood_Pressure_Diastolic": data.get("blood_pressure_diastolic", 0),
"BMI": data.get("bmi", 0),
"Condition_Severity": data.get("condition_severity", 0),
"Gender": data.get("Gender", 0),
"Ethnicity": data.get("Ethnicity", 0),
"Geographic_Location": data.get("Geographic_Location", 0),
"Smoking_Status": data.get("Smoking_Status", 0),
"Diagnoses_ICD10": data.get("Diagnoses_ICD10", 0),
"Medications": data.get("Medications", 0),
"Allergies": data.get("Allergies", 0),
"Previous_Treatments": data.get("Previous_Treatments", 0),
"Alcohol_Consumption": data.get("Alcohol_Consumption", 0),
"Exercise_Habits": data.get("Exercise_Habits", 0),
"Diet": data.get("Diet", 0),
"Functional_Status": data.get("Functional_Status", 0),
"Previous_Trial_Participation": data.get("Previous_Trial_Participation", 0)
}
}
return json.dumps(patient_data, indent=4)
def process_patient_data(age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, smoking_status, alcohol_consumption, exercise_habits, diet, condition_severity, functional_status, previous_trial_participation):
# Encode the data
categorical_data = [gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, smoking_status, alcohol_consumption, exercise_habits, diet, functional_status, previous_trial_participation]
print(f"Categorical data: {categorical_data}")
encoded_categorical_data = encode_categorical_data(categorical_data)
numerical_data = np.array([age, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, condition_severity])
print(f"Numerical data: {numerical_data}")
print(f"One-hot encoded data: {encoded_categorical_data}")
combined_data = np.hstack((numerical_data, encoded_categorical_data))
ordered_categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"]
zipped_data = zip(ordered_categories, encoded_categorical_data)
# Convert the zipped data to a dictionary
encoded_categorical_dict = {category: value for category, value in zipped_data}
# Convert the data to JSON
json_data = clear_data_to_json({
"age": age,
"blood_glucose_level": blood_glucose_level,
"blood_pressure_systolic": blood_pressure_systolic,
"blood_pressure_diastolic": blood_pressure_diastolic,
"bmi": bmi,
"condition_severity": condition_severity,
**encoded_categorical_dict
})
print(f"JSON data: {json_data}")
print(f"Combined data: {combined_data}")
# encrypted_array = encrypt_array(combined_data, "user_id")
# Send the data to the server
url = SERVER_URL + "clear-match"
response = requests.post(url, data=json_data)
# Check if the data was sent successfully
if response.status_code == 200:
print("Data sent successfully.")
else:
print("Error sending data.")
# Decrypt the result
# decrypted_result = decrypt_result(response.content, USER_ID)
print()
decrypted_result = response.json()
# If the answer is True, return the link
if decrypted_result:
return (
# f"Encrypted data: {encrypted_array}",
f"Decrypted result: {response.json()}"
)
else:
return (
# f"Encrypted data: {encrypted_array}",
f"Decrypted result: {response.json()}"
)
# Define the function to handle image upload
def handle_image_upload(image):
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
pooler_output = outputs.pooler_output[0]
sclaed_output = 127 + 127 * pooler_output / pooler_output.abs().max()
sclaed_output = sclaed_output.to(int)
return ["Melanoma", "Vascular lesion"]
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Patient Data Criteria Form\nPlease fill in the criteria for the type of patients you are looking for.")
with gr.Column():
with gr.Group():
age_input.render()
gender_input.render()
ethnicity_input.render()
geographic_location_input.render()
medications_input.render()
allergies_input.render()
previous_treatments_input.render()
blood_glucose_level_input.render()
blood_pressure_systolic_input.render()
blood_pressure_diastolic_input.render()
bmi_input.render()
smoking_status_input.render()
alcohol_consumption_input.render()
exercise_habits_input.render()
diet_input.render()
condition_severity_input.render()
functional_status_input.render()
previous_trial_participation_input.render()
with gr.Group():
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Skin Diagnosis", interactive=False)
image_input = gr.Image(label="Upload an Image")
gr.Button("Upload").click(handle_image_upload, inputs=image_input, outputs=diagnoses_icd10_input)
with gr.Group():
output = gr.JSON(label="Patient Data JSON")
gr.Button("Submit").click(process_patient_data, inputs=[
age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, medications_input, allergies_input, previous_treatments_input, blood_glucose_level_input, blood_pressure_systolic_input, blood_pressure_diastolic_input, bmi_input, smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, condition_severity_input, functional_status_input, previous_trial_participation_input
], outputs=output)
# Launch the app
demo.launch()