zero-shot-tts / src /f5_tts /infer /utils_infer.py
mrfakename's picture
Sync from GitHub repo
4dab15f verified
raw
history blame
13 kB
# A unified script for inference process
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
import hashlib
import re
import tempfile
from importlib.resources import files
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
import numpy as np
import torch
import torchaudio
import tqdm
from pydub import AudioSegment, silence
from transformers import pipeline
from vocos import Vocos
from f5_tts.model import CFM
from f5_tts.model.utils import (
get_tokenizer,
convert_char_to_pinyin,
)
_ref_audio_cache = {}
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
# -----------------------------------------
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
cross_fade_duration = 0.15
ode_method = "euler"
nfe_step = 32 # 16, 32
cfg_strength = 2.0
sway_sampling_coef = -1.0
speed = 1.0
fix_duration = None
# -----------------------------------------
# chunk text into smaller pieces
def chunk_text(text, max_chars=135):
"""
Splits the input text into chunks, each with a maximum number of characters.
Args:
text (str): The text to be split.
max_chars (int): The maximum number of characters per chunk.
Returns:
List[str]: A list of text chunks.
"""
chunks = []
current_chunk = ""
# Split the text into sentences based on punctuation followed by whitespace
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)
for sentence in sentences:
if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# load vocoder
def load_vocoder(is_local=False, local_path="", device=device):
if is_local:
print(f"Load vocos from local path {local_path}")
vocos = Vocos.from_hparams(f"{local_path}/config.yaml")
state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device)
vocos.load_state_dict(state_dict)
vocos.eval()
else:
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
return vocos
# load asr pipeline
asr_pipe = None
def initialize_asr_pipeline(device=device):
global asr_pipe
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
# load model checkpoint for inference
def load_checkpoint(model, ckpt_path, device, use_ema=True):
if device == "cuda":
model = model.half()
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path)
else:
checkpoint = torch.load(ckpt_path, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {"ema_model_state_dict": checkpoint}
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
model.load_state_dict(checkpoint["model_state_dict"])
else:
if ckpt_type == "safetensors":
checkpoint = {"model_state_dict": checkpoint}
model.load_state_dict(checkpoint["model_state_dict"])
return model.to(device)
# load model for inference
def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=device):
if vocab_file == "":
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer = "custom"
print("\nvocab : ", vocab_file)
print("tokenizer : ", tokenizer)
print("model : ", ckpt_path, "\n")
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
return model
# preprocess reference audio and text
def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print, device=device):
show_info("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
if len(non_silent_wave) > 10000 and len(non_silent_wave + non_silent_seg) > 18000:
show_info("Audio is over 18s, clipping short.")
break
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
ref_audio = f.name
# Compute a hash of the reference audio file
with open(ref_audio, "rb") as audio_file:
audio_data = audio_file.read()
audio_hash = hashlib.md5(audio_data).hexdigest()
global _ref_audio_cache
if audio_hash in _ref_audio_cache:
# Use cached reference text
show_info("Using cached reference text...")
ref_text = _ref_audio_cache[audio_hash]
else:
if not ref_text.strip():
global asr_pipe
if asr_pipe is None:
initialize_asr_pipeline(device=device)
show_info("No reference text provided, transcribing reference audio...")
ref_text = asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)["text"].strip()
show_info("Finished transcription")
else:
show_info("Using custom reference text...")
# Cache the transcribed text
_ref_audio_cache[audio_hash] = ref_text
# Ensure ref_text ends with a proper sentence-ending punctuation
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
if ref_text.endswith("."):
ref_text += " "
else:
ref_text += ". "
return ref_audio, ref_text
# infer process: chunk text -> infer batches [i.e. infer_batch_process()]
def infer_process(
ref_audio,
ref_text,
gen_text,
model_obj,
show_info=print,
progress=tqdm,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
):
# Split the input text into batches
audio, sr = torchaudio.load(ref_audio)
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
for i, gen_text in enumerate(gen_text_batches):
print(f"gen_text {i}", gen_text)
show_info(f"Generating audio in {len(gen_text_batches)} batches...")
return infer_batch_process(
(audio, sr),
ref_text,
gen_text_batches,
model_obj,
progress=progress,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
)
# infer batches
def infer_batch_process(
ref_audio,
ref_text,
gen_text_batches,
model_obj,
progress=tqdm,
target_rms=0.1,
cross_fade_duration=0.15,
nfe_step=32,
cfg_strength=2.0,
sway_sampling_coef=-1,
speed=1,
fix_duration=None,
device=None,
):
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
generated_waves = []
spectrograms = []
if len(ref_text[-1].encode("utf-8")) == 1:
ref_text = ref_text + " "
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
# Prepare the text
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
ref_audio_len = audio.shape[-1] // hop_length
if fix_duration is not None:
duration = int(fix_duration * target_sample_rate / hop_length)
else:
# Calculate duration
ref_text_len = len(ref_text.encode("utf-8"))
gen_text_len = len(gen_text.encode("utf-8"))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
with torch.inference_mode():
generated, _ = model_obj.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = generated.permute(0, 2, 1)
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves with cross-fading
if cross_fade_duration <= 0:
# Simply concatenate
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
# No overlap possible, concatenate
final_wave = np.concatenate([prev_wave, next_wave])
continue
# Overlapping parts
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
# Fade out and fade in
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
# Cross-faded overlap
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
# Combine
new_wave = np.concatenate(
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
)
final_wave = new_wave
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
return final_wave, target_sample_rate, combined_spectrogram
# remove silence from generated wav
def remove_silence_for_generated_wav(filename):
aseg = AudioSegment.from_file(filename)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(filename, format="wav")
# save spectrogram
def save_spectrogram(spectrogram, path):
plt.figure(figsize=(12, 4))
plt.imshow(spectrogram, origin="lower", aspect="auto")
plt.colorbar()
plt.savefig(path)
plt.close()