File size: 22,330 Bytes
2c5d424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8abd1e8
2c5d424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import os
import tempfile
import streamlit as st
from PIL import Image
import pytesseract
from pdf2image import convert_from_path
import pypdf
from dotenv import load_dotenv
import time

from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers import StrOutputParser
from langchain_together import Together
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings

import langgraph
from langgraph.graph import END
from typing import List, Dict, Any, TypedDict, Optional

# Load environment variables
load_dotenv()

# Set page configuration
st.set_page_config(
    page_title="Document Q&A",
    page_icon="πŸ“š",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better UI
st.markdown("""
<style>
    /* Base styles */
    .main {
        background-color: #f8fafc;
        color: #333;
        padding: 1rem;
    }
    
    /* Sidebar styling */
    [data-testid="stSidebar"] {
        background-color: #1e293b;
        color: #f8fafc;
        padding: 1rem;
    }
    
    /* Example questions */
    .example-button {
        background-color: #7c3aed;
        color: white;
        border: none;
        border-radius: 0.5rem;
        padding: 0.75rem 1rem;
        margin-bottom: 0.75rem;
        cursor: pointer;
        text-align: left;
        display: block;
        width: 100%;
        font-size: 0.9rem;
    }
    
    /* Chat container */
    .chat-container {
        min-height: 60vh;
        overflow-y: auto;
        padding: 1rem;
        background-color: white;
        border-radius: 0.5rem;
        border: 1px solid #e2e8f0;
        margin-bottom: 1rem;
    }
    
    /* Sidebar title */
    .sidebar-title {
        color: #f8fafc;
        font-size: 1.2rem;
        font-weight: 600;
        margin-bottom: 1rem;
        padding-bottom: 0.5rem;
        border-bottom: 1px solid #475569;
    }
    
    /* File list */
    .file-item {
        padding: 0.5rem;
        background-color: #334155;
        border-radius: 0.25rem;
        margin-bottom: 0.5rem;
        color: #f8fafc;
    }
    .file-name {
        font-weight: 500;
    }
    .file-type {
        font-size: 0.75rem;
        color: #cbd5e1;
    }
    
    /* Instructions */
    .instructions {
        color: #cbd5e1;
    }
    .instructions ol {
        margin-left: 1.5rem;
        padding-left: 0;
    }
    .instructions li {
        margin-bottom: 0.5rem;
    }
    
    /* Divider */
    .divider {
        height: 1px;
        background-color: #475569;
        margin: 1.5rem 0;
    }
    
    /* Override Streamlit button styles */
    .stButton > button {
        background-color: #7c3aed;
        color: white;
    }
    
    /* Override Streamlit file uploader */
    .stFileUploader > div > div {
        background-color: #334155;
        color: #f8fafc;
        border: 1px dashed #7c3aed;
        border-radius: 0.5rem;
        padding: 1rem;
    }
    
    /* Controls section */
    .controls-section {
        margin-top: 1rem;
    }
    
    /* Control buttons */
    .control-button {
        background-color: #7c3aed;
        color: white;
        border: none;
        border-radius: 0.25rem;
        padding: 0.5rem 1rem;
        margin-right: 0.5rem;
        margin-bottom: 0.5rem;
        cursor: pointer;
    }
    
    /* How to use section */
    .how-to-use {
        margin-bottom: 1.5rem;
    }
    .how-to-use ol {
        margin-left: 1.5rem;
        padding-left: 0;
    }
    .how-to-use li {
        margin-bottom: 0.5rem;
        color: #f8fafc;
    }
    
    /* Input field */
    .stTextInput > div > div > input {
        border: 1px solid #e2e8f0;
        border-radius: 0.5rem;
        padding: 0.75rem;
        font-size: 1rem;
    }
    
    /* Form styling */
    [data-testid="stForm"] {
        border: none;
        padding: 0;
    }
    
    /* Hide Streamlit branding */
    #MainMenu {visibility: hidden;}
    footer {visibility: hidden;}
    
    /* Chat messages */
    .user-message {
        background-color: #f3f4f6;
        padding: 0.75rem;
        border-radius: 0.5rem;
        margin-bottom: 0.75rem;
        color: #1e293b;
    }
    
    .assistant-message {
        background-color: #f8fafc;
        padding: 0.75rem;
        border-radius: 0.5rem;
        margin-bottom: 0.75rem;
        border: 1px solid #e2e8f0;
        color: #1e293b;
    }
    
    /* Chat input container */
    .chat-input-container {
        display: flex;
        align-items: center;
        background-color: white;
        border-radius: 0.5rem;
        padding: 0.5rem;
        border: 1px solid #e2e8f0;
    }
    
    /* Document status */
    .document-status {
        padding: 0.5rem;
        border-radius: 0.5rem;
        margin-top: 0.5rem;
        font-size: 0.9rem;
    }
    
    .status-success {
        background-color: #dcfce7;
        color: #166534;
    }
    
    .status-waiting {
        background-color: #f3f4f6;
        color: #4b5563;
    }
    
    /* Tabs styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
    }
    
    .stTabs [data-baseweb="tab"] {
        background-color: #f1f5f9;
        border-radius: 4px 4px 0 0;
        padding: 8px 16px;
        height: auto;
    }
    
    .stTabs [aria-selected="true"] {
        background-color: white !important;
        border-bottom: 2px solid #7c3aed !important;
    }
    
    /* Sidebar section headers */
    .sidebar-section-header {
        color: #f8fafc;
        font-size: 1rem;
        font-weight: 600;
        margin-top: 1rem;
        margin-bottom: 0.5rem;
    }
    
    /* Sidebar file uploader label */
    .sidebar-uploader-label {
        color: #f8fafc;
        font-size: 0.9rem;
        margin-bottom: 0.5rem;
    }
</style>
""", unsafe_allow_html=True)

# Example questions
EXAMPLE_QUESTIONS = [
    "How do the different topics in these documents relate to each other?",
    "What is the structure of this document?",
    "Can you analyze the writing style of this text?",
    "Extract all dates and events mentioned in the document",
    "What are the main arguments presented in this document?"
]

# Initialize the LLM
@st.cache_resource
def get_llm():
    return Together(
        model="deepseek-ai/DeepSeek-V3",
        temperature=0.7,
        max_tokens=1024
    )

# Initialize embeddings
@st.cache_resource
def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# Initialize text splitter
@st.cache_resource
def get_text_splitter():
    return RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200
    )

# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
    pdf_reader = pypdf.PdfReader(pdf_file)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text() or ""
    return text

# Function to extract text from image using OCR
def extract_text_from_image(image_file):
    image = Image.open(image_file)
    text = pytesseract.image_to_string(image)
    return text

# Function to process PDF with OCR if needed
def process_pdf_with_ocr(pdf_file):
    # First try normal text extraction
    text = extract_text_from_pdf(pdf_file)
    
    # If little or no text was extracted, try OCR
    if len(text.strip()) < 100:
        images = convert_from_path(pdf_file)
        text = ""
        for image in images:
            text += pytesseract.image_to_string(image)
    
    return text

# Function to process uploaded files
def process_uploaded_files(uploaded_files):
    all_texts = []
    file_info = []
    
    for file in uploaded_files:
        # Create a temporary file
        with tempfile.NamedTemporaryFile(delete=False) as temp_file:
            temp_file.write(file.getvalue())
            temp_file_path = temp_file.name
        
        # Process based on file type
        if file.name.lower().endswith('.pdf'):
            text = process_pdf_with_ocr(temp_file_path)
            file_type = "PDF"
        elif file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
            text = extract_text_from_image(temp_file_path)
            file_type = "Image"
        elif file.name.lower().endswith(('.txt', '.md')):
            text = file.getvalue().decode('utf-8')
            file_type = "Text"
        else:
            text = f"Unsupported file format: {file.name}"
            file_type = "Unknown"
        
        all_texts.append(f"--- Content from {file.name} ---\n{text}")
        file_info.append({"name": file.name, "type": file_type})
        
        # Clean up the temporary file
        os.unlink(temp_file_path)
    
    return "\n\n".join(all_texts), file_info

# Function to create vector store from text
def create_vectorstore(text):
    text_splitter = get_text_splitter()
    chunks = text_splitter.split_text(text)
    
    # Use FAISS instead of Chroma to avoid SQLite dependency
    return FAISS.from_texts(
        texts=chunks,
        embedding=get_embeddings()
    )

# Define the state schema for the graph using TypedDict
class GraphState(TypedDict):
    messages: List
    documents: List
    thinking: str

# Define the RAG agent using LangGraph
def create_rag_agent(vectorstore):
    # Define the retrieval component
    def retrieve(state: GraphState) -> GraphState:
        query = state["messages"][-1].content
        docs = vectorstore.similarity_search(query, k=5)
        return {"documents": docs, "messages": state["messages"], "thinking": state.get("thinking", "")}

    # Define the generation component with thinking step
    def generate(state: GraphState) -> GraphState:
        messages = state["messages"]
        documents = state["documents"]
        
        # Extract relevant context from documents
        context = "\n\n".join([f"Document {i+1}:\n{doc.page_content}" for i, doc in enumerate(documents)])
        
        # First, have the model think about the query
        thinking_prompt = ChatPromptTemplate.from_messages([
            SystemMessage(content="You are an assistant that thinks step by step before answering."),
            MessagesPlaceholder(variable_name="messages"),
            SystemMessage(content=f"Here is relevant context from the knowledge base:\n{context}\n\nThink step by step about how to answer the query using this context.")
        ])
        
        thinking = thinking_prompt | get_llm() | StrOutputParser()
        thinking_result = thinking.invoke({"messages": messages})
        
        # Then generate the final answer
        answer_prompt = ChatPromptTemplate.from_messages([
            SystemMessage(content="You are a helpful assistant that provides accurate information based on the given context."),
            MessagesPlaceholder(variable_name="messages"),
            SystemMessage(content=f"Here is relevant context from the knowledge base:\n{context}\n\nHere is your thinking process:\n{thinking_result}\n\nNow provide a clear and helpful answer based on this context and thinking.")
        ])
        
        answer = answer_prompt | get_llm() | StrOutputParser()
        response = answer.invoke({"messages": messages})
        
        return {
            "messages": messages + [AIMessage(content=response)],
            "thinking": thinking_result,
            "documents": documents
        }

    # Create the graph
    from langgraph.graph import StateGraph
    workflow = StateGraph(GraphState)
    
    workflow.add_node("retrieve", retrieve)
    workflow.add_node("generate", generate)
    
    workflow.set_entry_point("retrieve")
    workflow.add_edge("retrieve", "generate")
    workflow.add_edge("generate", END)
    
    # Compile the graph
    app = workflow.compile()
    
    return app

# Function to clear all session state
def clear_session_state():
    for key in list(st.session_state.keys()):
        del st.session_state[key]

# Main app layout
def main():
    # Initialize session state for showing examples
    if "show_examples" not in st.session_state:
        st.session_state.show_examples = True
    
    # Initialize messages if not exists
    if "messages" not in st.session_state:
        st.session_state.messages = []
    
    # Initialize thinking history if not exists
    if "thinking_history" not in st.session_state:
        st.session_state.thinking_history = []
    
    # Sidebar for document upload and controls
    with st.sidebar:
        st.markdown('<div class="sidebar-title">πŸ“š Document Q&A</div>', unsafe_allow_html=True)
        
        st.markdown("""
        <div class="how-to-use">
        <ol>
            <li>Upload your documents using the form below</li>
            <li>Process the documents</li>
            <li>Ask questions about your documents</li>
            <li>View the AI's answers and thinking process</li>
        </ol>
        </div>
        """, unsafe_allow_html=True)
        
        # Document upload section
        st.markdown('<div class="sidebar-section-header">πŸ“„ Upload Documents</div>', unsafe_allow_html=True)
        st.markdown('<div class="sidebar-uploader-label">Select files to upload:</div>', unsafe_allow_html=True)
        
        # File uploader
        uploaded_files = st.file_uploader("Upload documents", 
                                        type=["pdf", "txt", "png", "jpg", "jpeg"], 
                                        accept_multiple_files=True,
                                        label_visibility="collapsed")
        
        # Process button
        if uploaded_files:
            if st.button("Process Documents"):
                with st.spinner("Processing documents..."):
                    # Process progress bar
                    progress_bar = st.progress(0)
                    for i in range(100):
                        time.sleep(0.01)
                        progress_bar.progress(i + 1)
                    
                    # Process the files
                    text, file_info = process_uploaded_files(uploaded_files)
                    st.session_state.vectorstore = create_vectorstore(text)
                    st.session_state.documents_processed = True
                    st.session_state.file_info = file_info
                    
                    # Display success message
                    st.success(f"βœ… Processed {len(uploaded_files)} documents successfully!")
        
        # Document info section
        if "file_info" in st.session_state and st.session_state.file_info:
            st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
            st.markdown('<div class="sidebar-section-header">πŸ“‹ Document Information</div>', unsafe_allow_html=True)
            
            # Display file list
            for i, file in enumerate(st.session_state.file_info):
                st.markdown(f"""
                <div class="file-item">
                    <div class="file-name">{file['name']}</div>
                    <div class="file-type">{file['type']} file</div>
                </div>
                """, unsafe_allow_html=True)
            
            # Remove documents button
            if st.button("Remove All Documents"):
                if "vectorstore" in st.session_state:
                    del st.session_state.vectorstore
                if "file_info" in st.session_state:
                    del st.session_state.file_info
                if "documents_processed" in st.session_state:
                    del st.session_state.documents_processed
                st.success("All documents removed!")
                st.rerun()
        
        # Controls section
        st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
        st.markdown('<div class="sidebar-section-header">βš™οΈ Controls</div>', unsafe_allow_html=True)
        
        # Clear chat button
        if st.button("Clear Chat"):
            if "messages" in st.session_state:
                st.session_state.messages = []
            if "thinking_history" in st.session_state:
                st.session_state.thinking_history = []
            st.rerun()
        
        # Reset all button
        if st.button("Reset All"):
            clear_session_state()
            st.rerun()
        
        # Hide/Show examples button
        if st.button("Hide Examples" if st.session_state.show_examples else "Show Examples"):
            st.session_state.show_examples = not st.session_state.show_examples
            st.rerun()
    
    # Main content area
    st.title("Document Q&A Assistant")
    
    # Example questions section - only show if flag is True
    if st.session_state.show_examples:
        st.markdown("### Example Questions")
        cols = st.columns(len(EXAMPLE_QUESTIONS))
        for i, question in enumerate(EXAMPLE_QUESTIONS):
            with cols[i]:
                if st.button(question, key=f"example_{hash(question)}"):
                    st.session_state.messages.append(HumanMessage(content=question))
                    
                    # Generate response if vectorstore exists
                    if "vectorstore" in st.session_state:
                        with st.spinner("Thinking..."):
                            # Create RAG agent
                            rag_agent = create_rag_agent(st.session_state.vectorstore)
                            
                            # Run the agent
                            result = rag_agent.invoke({
                                "messages": [HumanMessage(content=question)],
                                "documents": [],
                                "thinking": ""
                            })
                            
                            # Store thinking process
                            st.session_state.thinking_history.append(result["thinking"])
                            
                            # Add AI message to chat history
                            st.session_state.messages.append(result["messages"][-1])
                    else:
                        # Add AI message to chat history
                        st.session_state.messages.append(AIMessage(content="Please upload and process documents first."))
                    st.rerun()
    
    # Chat container
    st.markdown("### πŸ’¬ Chat")
    chat_container = st.container()
    
    with chat_container:
        # Display chat messages
        if st.session_state.messages:
            for i, message in enumerate(st.session_state.messages):
                if isinstance(message, HumanMessage):
                    st.markdown(f"""
                    <div class="user-message">
                        <strong>User:</strong> {message.content}
                    </div>
                    """, unsafe_allow_html=True)
                else:
                    st.markdown(f"""
                    <div class="assistant-message">
                        <strong>Assistant:</strong> {message.content}
                    </div>
                    """, unsafe_allow_html=True)
                    
                    # Show thinking process if available
                    if "thinking_history" in st.session_state and i//2 < len(st.session_state.thinking_history):
                        thinking = st.session_state.thinking_history[i//2]
                        
                        # Create a unique key for this thinking process
                        thinking_key = f"thinking_{i//2}"
                        
                        # Store the visibility state in session_state if not already there
                        if thinking_key not in st.session_state:
                            st.session_state[thinking_key] = False
                        
                        # Toggle button for thinking process
                        toggle_text = "Show thinking" if not st.session_state[thinking_key] else "Hide thinking"
                        
                        # Create the toggle button
                        if st.button(toggle_text, key=f"toggle_{thinking_key}"):
                            st.session_state[thinking_key] = not st.session_state[thinking_key]
                            st.rerun()
                        
                        # Show thinking process if toggled on
                        if st.session_state[thinking_key]:
                            with st.expander("Thinking Process", expanded=True):
                                st.write(thinking)
        else:
            st.info("Upload documents and start asking questions!")
    
    # Chat input
    st.markdown("### Ask a question about your documents")
    with st.form(key="chat_form", clear_on_submit=True):
        user_input = st.text_input("Type your question here...", key="user_question", label_visibility="collapsed")
        cols = st.columns([6, 1])
        with cols[0]:
            submit_button = st.form_submit_button("Ask", use_container_width=True)
    
    if submit_button and user_input:
        # Add user message to chat history
        st.session_state.messages.append(HumanMessage(content=user_input))
        
        # Generate response if vectorstore exists
        if "vectorstore" in st.session_state:
            with st.spinner("Thinking..."):
                # Create RAG agent
                rag_agent = create_rag_agent(st.session_state.vectorstore)
                
                # Run the agent
                result = rag_agent.invoke({
                    "messages": [HumanMessage(content=user_input)],
                    "documents": [],
                    "thinking": ""
                })
                
                # Store thinking process
                st.session_state.thinking_history.append(result["thinking"])
                
                # Add AI message to chat history
                st.session_state.messages.append(result["messages"][-1])
        else:
            # Add AI message to chat history
            st.session_state.messages.append(AIMessage(content="Please upload and process documents first."))
        
        # Rerun to update the UI
        st.rerun()

if __name__ == "__main__":
    main()