Spaces:
Running
Running
from os.path import dirname, join, basename, isfile | |
from tqdm import tqdm | |
from models import SyncNet_color as SyncNet | |
from models import Wav2Lip, Wav2Lip_disc_qual | |
import audio | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch import optim | |
import torch.backends.cudnn as cudnn | |
from torch.utils import data as data_utils | |
import numpy as np | |
from glob import glob | |
import os, random, cv2, argparse | |
from hparams import hparams, get_image_list | |
parser = argparse.ArgumentParser(description='Code to train the Wav2Lip model WITH the visual quality discriminator') | |
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True, type=str) | |
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str) | |
parser.add_argument('--syncnet_checkpoint_path', help='Load the pre-trained Expert discriminator', required=True, type=str) | |
parser.add_argument('--checkpoint_path', help='Resume generator from this checkpoint', default=None, type=str) | |
parser.add_argument('--disc_checkpoint_path', help='Resume quality disc from this checkpoint', default=None, type=str) | |
args = parser.parse_args() | |
global_step = 0 | |
global_epoch = 0 | |
use_cuda = torch.cuda.is_available() | |
print('use_cuda: {}'.format(use_cuda)) | |
syncnet_T = 5 | |
syncnet_mel_step_size = 16 | |
class Dataset(object): | |
def __init__(self, split): | |
self.all_videos = get_image_list(args.data_root, split) | |
def get_frame_id(self, frame): | |
return int(basename(frame).split('.')[0]) | |
def get_window(self, start_frame): | |
start_id = self.get_frame_id(start_frame) | |
vidname = dirname(start_frame) | |
window_fnames = [] | |
for frame_id in range(start_id, start_id + syncnet_T): | |
frame = join(vidname, '{}.jpg'.format(frame_id)) | |
if not isfile(frame): | |
return None | |
window_fnames.append(frame) | |
return window_fnames | |
def read_window(self, window_fnames): | |
if window_fnames is None: return None | |
window = [] | |
for fname in window_fnames: | |
img = cv2.imread(fname) | |
if img is None: | |
return None | |
try: | |
img = cv2.resize(img, (hparams.img_size, hparams.img_size)) | |
except Exception as e: | |
return None | |
window.append(img) | |
return window | |
def crop_audio_window(self, spec, start_frame): | |
if type(start_frame) == int: | |
start_frame_num = start_frame | |
else: | |
start_frame_num = self.get_frame_id(start_frame) | |
start_idx = int(80. * (start_frame_num / float(hparams.fps))) | |
end_idx = start_idx + syncnet_mel_step_size | |
return spec[start_idx : end_idx, :] | |
def get_segmented_mels(self, spec, start_frame): | |
mels = [] | |
assert syncnet_T == 5 | |
start_frame_num = self.get_frame_id(start_frame) + 1 # 0-indexing ---> 1-indexing | |
if start_frame_num - 2 < 0: return None | |
for i in range(start_frame_num, start_frame_num + syncnet_T): | |
m = self.crop_audio_window(spec, i - 2) | |
if m.shape[0] != syncnet_mel_step_size: | |
return None | |
mels.append(m.T) | |
mels = np.asarray(mels) | |
return mels | |
def prepare_window(self, window): | |
# 3 x T x H x W | |
x = np.asarray(window) / 255. | |
x = np.transpose(x, (3, 0, 1, 2)) | |
return x | |
def __len__(self): | |
return len(self.all_videos) | |
def __getitem__(self, idx): | |
while 1: | |
idx = random.randint(0, len(self.all_videos) - 1) | |
vidname = self.all_videos[idx] | |
img_names = list(glob(join(vidname, '*.jpg'))) | |
if len(img_names) <= 3 * syncnet_T: | |
continue | |
img_name = random.choice(img_names) | |
wrong_img_name = random.choice(img_names) | |
while wrong_img_name == img_name: | |
wrong_img_name = random.choice(img_names) | |
window_fnames = self.get_window(img_name) | |
wrong_window_fnames = self.get_window(wrong_img_name) | |
if window_fnames is None or wrong_window_fnames is None: | |
continue | |
window = self.read_window(window_fnames) | |
if window is None: | |
continue | |
wrong_window = self.read_window(wrong_window_fnames) | |
if wrong_window is None: | |
continue | |
try: | |
wavpath = join(vidname, "audio.wav") | |
wav = audio.load_wav(wavpath, hparams.sample_rate) | |
orig_mel = audio.melspectrogram(wav).T | |
except Exception as e: | |
continue | |
mel = self.crop_audio_window(orig_mel.copy(), img_name) | |
if (mel.shape[0] != syncnet_mel_step_size): | |
continue | |
indiv_mels = self.get_segmented_mels(orig_mel.copy(), img_name) | |
if indiv_mels is None: continue | |
window = self.prepare_window(window) | |
y = window.copy() | |
window[:, :, window.shape[2]//2:] = 0. | |
wrong_window = self.prepare_window(wrong_window) | |
x = np.concatenate([window, wrong_window], axis=0) | |
x = torch.FloatTensor(x) | |
mel = torch.FloatTensor(mel.T).unsqueeze(0) | |
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1) | |
y = torch.FloatTensor(y) | |
return x, indiv_mels, mel, y | |
def save_sample_images(x, g, gt, global_step, checkpoint_dir): | |
x = (x.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8) | |
g = (g.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8) | |
gt = (gt.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8) | |
refs, inps = x[..., 3:], x[..., :3] | |
folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step)) | |
if not os.path.exists(folder): os.mkdir(folder) | |
collage = np.concatenate((refs, inps, g, gt), axis=-2) | |
for batch_idx, c in enumerate(collage): | |
for t in range(len(c)): | |
cv2.imwrite('{}/{}_{}.jpg'.format(folder, batch_idx, t), c[t]) | |
logloss = nn.BCELoss() | |
def cosine_loss(a, v, y): | |
d = nn.functional.cosine_similarity(a, v) | |
loss = logloss(d.unsqueeze(1), y) | |
return loss | |
device = torch.device("cuda" if use_cuda else "cpu") | |
syncnet = SyncNet().to(device) | |
for p in syncnet.parameters(): | |
p.requires_grad = False | |
recon_loss = nn.L1Loss() | |
def get_sync_loss(mel, g): | |
g = g[:, :, :, g.size(3)//2:] | |
g = torch.cat([g[:, :, i] for i in range(syncnet_T)], dim=1) | |
# B, 3 * T, H//2, W | |
a, v = syncnet(mel, g) | |
y = torch.ones(g.size(0), 1).float().to(device) | |
return cosine_loss(a, v, y) | |
def train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer, | |
checkpoint_dir=None, checkpoint_interval=None, nepochs=None): | |
global global_step, global_epoch | |
resumed_step = global_step | |
while global_epoch < nepochs: | |
print('Starting Epoch: {}'.format(global_epoch)) | |
running_sync_loss, running_l1_loss, disc_loss, running_perceptual_loss = 0., 0., 0., 0. | |
running_disc_real_loss, running_disc_fake_loss = 0., 0. | |
prog_bar = tqdm(enumerate(train_data_loader)) | |
for step, (x, indiv_mels, mel, gt) in prog_bar: | |
disc.train() | |
model.train() | |
x = x.to(device) | |
mel = mel.to(device) | |
indiv_mels = indiv_mels.to(device) | |
gt = gt.to(device) | |
### Train generator now. Remove ALL grads. | |
optimizer.zero_grad() | |
disc_optimizer.zero_grad() | |
g = model(indiv_mels, x) | |
if hparams.syncnet_wt > 0.: | |
sync_loss = get_sync_loss(mel, g) | |
else: | |
sync_loss = 0. | |
if hparams.disc_wt > 0.: | |
perceptual_loss = disc.perceptual_forward(g) | |
else: | |
perceptual_loss = 0. | |
l1loss = recon_loss(g, gt) | |
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \ | |
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss | |
loss.backward() | |
optimizer.step() | |
### Remove all gradients before Training disc | |
disc_optimizer.zero_grad() | |
pred = disc(gt) | |
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device)) | |
disc_real_loss.backward() | |
pred = disc(g.detach()) | |
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device)) | |
disc_fake_loss.backward() | |
disc_optimizer.step() | |
running_disc_real_loss += disc_real_loss.item() | |
running_disc_fake_loss += disc_fake_loss.item() | |
if global_step % checkpoint_interval == 0: | |
save_sample_images(x, g, gt, global_step, checkpoint_dir) | |
# Logs | |
global_step += 1 | |
cur_session_steps = global_step - resumed_step | |
running_l1_loss += l1loss.item() | |
if hparams.syncnet_wt > 0.: | |
running_sync_loss += sync_loss.item() | |
else: | |
running_sync_loss += 0. | |
if hparams.disc_wt > 0.: | |
running_perceptual_loss += perceptual_loss.item() | |
else: | |
running_perceptual_loss += 0. | |
if global_step == 1 or global_step % checkpoint_interval == 0: | |
save_checkpoint( | |
model, optimizer, global_step, checkpoint_dir, global_epoch) | |
save_checkpoint(disc, disc_optimizer, global_step, checkpoint_dir, global_epoch, prefix='disc_') | |
if global_step % hparams.eval_interval == 0: | |
with torch.no_grad(): | |
average_sync_loss = eval_model(test_data_loader, global_step, device, model, disc) | |
if average_sync_loss < .75: | |
hparams.set_hparam('syncnet_wt', 0.03) | |
prog_bar.set_description('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(running_l1_loss / (step + 1), | |
running_sync_loss / (step + 1), | |
running_perceptual_loss / (step + 1), | |
running_disc_fake_loss / (step + 1), | |
running_disc_real_loss / (step + 1))) | |
global_epoch += 1 | |
def eval_model(test_data_loader, global_step, device, model, disc): | |
eval_steps = 300 | |
print('Evaluating for {} steps'.format(eval_steps)) | |
running_sync_loss, running_l1_loss, running_disc_real_loss, running_disc_fake_loss, running_perceptual_loss = [], [], [], [], [] | |
while 1: | |
for step, (x, indiv_mels, mel, gt) in enumerate((test_data_loader)): | |
model.eval() | |
disc.eval() | |
x = x.to(device) | |
mel = mel.to(device) | |
indiv_mels = indiv_mels.to(device) | |
gt = gt.to(device) | |
pred = disc(gt) | |
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device)) | |
g = model(indiv_mels, x) | |
pred = disc(g) | |
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device)) | |
running_disc_real_loss.append(disc_real_loss.item()) | |
running_disc_fake_loss.append(disc_fake_loss.item()) | |
sync_loss = get_sync_loss(mel, g) | |
if hparams.disc_wt > 0.: | |
perceptual_loss = disc.perceptual_forward(g) | |
else: | |
perceptual_loss = 0. | |
l1loss = recon_loss(g, gt) | |
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \ | |
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss | |
running_l1_loss.append(l1loss.item()) | |
running_sync_loss.append(sync_loss.item()) | |
if hparams.disc_wt > 0.: | |
running_perceptual_loss.append(perceptual_loss.item()) | |
else: | |
running_perceptual_loss.append(0.) | |
if step > eval_steps: break | |
print('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(sum(running_l1_loss) / len(running_l1_loss), | |
sum(running_sync_loss) / len(running_sync_loss), | |
sum(running_perceptual_loss) / len(running_perceptual_loss), | |
sum(running_disc_fake_loss) / len(running_disc_fake_loss), | |
sum(running_disc_real_loss) / len(running_disc_real_loss))) | |
return sum(running_sync_loss) / len(running_sync_loss) | |
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch, prefix=''): | |
checkpoint_path = join( | |
checkpoint_dir, "{}checkpoint_step{:09d}.pth".format(prefix, global_step)) | |
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None | |
torch.save({ | |
"state_dict": model.state_dict(), | |
"optimizer": optimizer_state, | |
"global_step": step, | |
"global_epoch": epoch, | |
}, checkpoint_path) | |
print("Saved checkpoint:", checkpoint_path) | |
def _load(checkpoint_path): | |
if use_cuda: | |
checkpoint = torch.load(checkpoint_path) | |
else: | |
checkpoint = torch.load(checkpoint_path, | |
map_location=lambda storage, loc: storage) | |
return checkpoint | |
def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True): | |
global global_step | |
global global_epoch | |
print("Load checkpoint from: {}".format(path)) | |
checkpoint = _load(path) | |
s = checkpoint["state_dict"] | |
new_s = {} | |
for k, v in s.items(): | |
new_s[k.replace('module.', '')] = v | |
model.load_state_dict(new_s) | |
if not reset_optimizer: | |
optimizer_state = checkpoint["optimizer"] | |
if optimizer_state is not None: | |
print("Load optimizer state from {}".format(path)) | |
optimizer.load_state_dict(checkpoint["optimizer"]) | |
if overwrite_global_states: | |
global_step = checkpoint["global_step"] | |
global_epoch = checkpoint["global_epoch"] | |
return model | |
if __name__ == "__main__": | |
checkpoint_dir = args.checkpoint_dir | |
# Dataset and Dataloader setup | |
train_dataset = Dataset('train') | |
test_dataset = Dataset('val') | |
train_data_loader = data_utils.DataLoader( | |
train_dataset, batch_size=hparams.batch_size, shuffle=True, | |
num_workers=hparams.num_workers) | |
test_data_loader = data_utils.DataLoader( | |
test_dataset, batch_size=hparams.batch_size, | |
num_workers=4) | |
device = torch.device("cuda" if use_cuda else "cpu") | |
# Model | |
model = Wav2Lip().to(device) | |
disc = Wav2Lip_disc_qual().to(device) | |
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad))) | |
print('total DISC trainable params {}'.format(sum(p.numel() for p in disc.parameters() if p.requires_grad))) | |
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad], | |
lr=hparams.initial_learning_rate, betas=(0.5, 0.999)) | |
disc_optimizer = optim.Adam([p for p in disc.parameters() if p.requires_grad], | |
lr=hparams.disc_initial_learning_rate, betas=(0.5, 0.999)) | |
if args.checkpoint_path is not None: | |
load_checkpoint(args.checkpoint_path, model, optimizer, reset_optimizer=False) | |
if args.disc_checkpoint_path is not None: | |
load_checkpoint(args.disc_checkpoint_path, disc, disc_optimizer, | |
reset_optimizer=False, overwrite_global_states=False) | |
load_checkpoint(args.syncnet_checkpoint_path, syncnet, None, reset_optimizer=True, | |
overwrite_global_states=False) | |
if not os.path.exists(checkpoint_dir): | |
os.mkdir(checkpoint_dir) | |
# Train! | |
train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer, | |
checkpoint_dir=checkpoint_dir, | |
checkpoint_interval=hparams.checkpoint_interval, | |
nepochs=hparams.nepochs) | |