title: MSE
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
Mean Squared Error(MSE) is the average of the square of difference between the
predicted and actual values.
Metric Card for MSE
Metric Description
Mean Squared Error(MSE) represents the average of the squares of errors -- i.e. the average squared difference between the estimated values and the actual values.
How to Use
At minimum, this metric requires predictions and references as inputs.
>>> mse_metric = evaluate.load("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
Inputs
Mandatory inputs:
predictions
: numeric array-like of shape (n_samples,
) or (n_samples
,n_outputs
), representing the estimated target values.references
: numeric array-like of shape (n_samples,
) or (n_samples
,n_outputs
), representing the ground truth (correct) target values.
Optional arguments:
sample_weight
: numeric array-like of shape (n_samples,
) representing sample weights. The default isNone
.multioutput
:raw_values
,uniform_average
or numeric array-like of shape (n_outputs,
), which defines the aggregation of multiple output values. The default value isuniform_average
.raw_values
returns a full set of errors in case of multioutput input.uniform_average
means that the errors of all outputs are averaged with uniform weight.- the array-like value defines weights used to average errors.
squared
(bool
): IfTrue
returns MSE value, ifFalse
returns RMSE (Root Mean Squared Error). The default value isTrue
.
Output Values
This metric outputs a dictionary, containing the mean squared error score, which is of type:
float
: if multioutput isuniform_average
or an ndarray of weights, then the weighted average of all output errors is returned.- numeric array-like of shape (
n_outputs,
): if multioutput israw_values
, then the score is returned for each output separately.
Each MSE float
value ranges from 0.0
to 1.0
, with the best value being 0.0
.
Output Example(s):
{'mse': 0.5}
If multioutput="raw_values"
:
{'mse': array([0.41666667, 1. ])}
Values from Popular Papers
Examples
Example with the uniform_average
config:
>>> mse_metric = evaluate.load("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
Example with squared = True
, which returns the RMSE:
>>> mse_metric = evaluate.load("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
Example with multi-dimensional lists, and the raw_values
config:
>>> mse_metric = evaluate.load("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results)
{'mse': array([0.41666667, 1. ])}
"""
Limitations and Bias
MSE has the disadvantage of heavily weighting outliers -- given that it squares them, this results in large errors weighing more heavily than small ones. It can be used alongside MAE, which is complementary given that it does not square the errors.
Citation(s)
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
@article{willmott2005advantages,
title={Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance},
author={Willmott, Cort J and Matsuura, Kenji},
journal={Climate research},
volume={30},
number={1},
pages={79--82},
year={2005}
}