Spaces:
Sleeping
Sleeping
import os | |
from huggingface_hub import login | |
from transformers import MarianMTModel, MarianTokenizer, pipeline | |
import requests | |
import io | |
from PIL import Image | |
import gradio as gr | |
# Set Hugging Face API key | |
hf_token = os.getenv("HUGGINGFACE_API_KEY") | |
if hf_token is None: | |
raise ValueError("Hugging Face API key not found in environment variables.") | |
# Login to Hugging Face | |
login(token=hf_token) | |
# Define models for specific languages | |
language_models = { | |
"fra": "Helsinki-NLP/opus-mt-fr-en", | |
"spa": "Helsinki-NLP/opus-mt-es-en", | |
"tam": "Helsinki-NLP/opus-mt-tam-en", | |
"deu": "Helsinki-NLP/opus-mt-de-en", | |
"jpn": "Helsinki-NLP/opus-mt-ja-en", | |
"rus": "Helsinki-NLP/opus-mt-ru-en", | |
"kor": "Helsinki-NLP/opus-mt-ko-en", | |
"hin": "Helsinki-NLP/opus-mt-hi-en", | |
"ita": "Helsinki-NLP/opus-mt-it-en", | |
"por": "Helsinki-NLP/opus-mt-pt-en" | |
# Add more language models as needed | |
} | |
# Function to get translator pipeline for specific language | |
def get_translator(language_code): | |
model_name = language_models.get(language_code) | |
if model_name: | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
return pipeline("translation", model=model, tokenizer=tokenizer) | |
else: | |
raise ValueError(f"No translation model found for language code '{language_code}'.") | |
# FLUX model API settings | |
flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
flux_headers = {"Authorization": f"Bearer {hf_token}"} | |
# Function for translation, creative text generation, and image creation | |
def translate_generate_image_and_text(input_text, src_lang_code): | |
try: | |
# Step 1: Get translator and translate text | |
translator = get_translator(src_lang_code) | |
translation = translator(input_text, max_length=40) | |
translated_text = translation[0]['translation_text'] | |
# Step 2: Generate creative text with Mistral model | |
mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" | |
mistral_headers = {"Authorization": f"Bearer {hf_token}"} | |
mistral_response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text}) | |
if mistral_response.status_code == 200: | |
creative_text = mistral_response.json()[0]['generated_text'] | |
else: | |
creative_text = "Error generating creative text" | |
# Step 3: Generate an image with FLUX model | |
flux_response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": creative_text}) | |
if flux_response.status_code == 200: | |
image_bytes = flux_response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
else: | |
image = None | |
return translated_text, creative_text, image | |
except Exception as e: | |
return f"An error occurred: {str(e)}", None, None | |
# Gradio interface setup | |
interface = gr.Interface( | |
fn=translate_generate_image_and_text, | |
inputs=[ | |
gr.Textbox(label="Enter text for translation"), | |
gr.Textbox(label="Source Language Code", placeholder="e.g., 'fra' for French, 'spa' for Spanish") | |
], | |
outputs=[ | |
gr.Textbox(label="Translated Text"), | |
gr.Textbox(label="Creative Text"), | |
gr.Image(label="Generated Image") | |
], | |
title="Multilingual Translation, Creative Content, and Image Generator", | |
description="Select a language and translate text to English, generate creative content, and produce an image." | |
) | |
# Launch the Gradio app | |
interface.launch() | |