File size: 2,475 Bytes
d347764
cc6d9dc
ff3f816
d347764
 
 
9e2a87c
d347764
 
 
 
9e2a87c
 
d347764
9e2a87c
d347764
9e2a87c
6ab6711
 
d347764
 
 
9e2a87c
 
d347764
 
 
6ab6711
 
 
 
d347764
 
 
 
 
ff3f816
d347764
 
 
 
 
f805e49
 
8bebf7d
 
f805e49
 
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
 
3946ba6
c737803
49c1298
9e2a87c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import gradio as gr
import librosa
import logging
import numpy as np
import torch

from transformers import VitsModel, VitsTokenizer, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"

target_language = "fr"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": target_language})
    return outputs["text"]


def synthesise(text):
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(inputs["input_ids"])
    speech = outputs["waveform"]
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    logging.info(f"Translated Text: {translated_text}")
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/preetam8/speecht5_finetuned_voxpopuli_fr) model for text-to-speech finetuned for french:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

logging.getLogger().setLevel(logging.INFO)
demo.launch()