File size: 3,631 Bytes
d347764 cc6d9dc ff3f816 d347764 9e2a87c 2e545c4 d347764 9e2a87c d347764 e970d56 be03dff d347764 9e2a87c 6ab6711 d347764 be03dff d347764 6ab6711 d614113 af4a9d1 d347764 ff3f816 d347764 f805e49 8bebf7d f805e49 c737803 d347764 226ec3a d347764 f805e49 d347764 c737803 3946ba6 c737803 49c1298 9e2a87c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import gradio as gr
import librosa
import logging
import numpy as np
import torch
from transformers import VitsModel, VitsTokenizer, pipeline
from transformers import WhisperForConditionalGeneration, WhisperProcessor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
target_language = "fr"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device)
# whisper_model_name = "openai/whisper-small"
# whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
# whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
# decoder_ids = whisper_processor.get_decoder_prompt_ids(language=target_language, task="transcribe")
# load text-to-speech checkpoint
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": target_language})
return outputs["text"]
# def translate(audio):
# if isinstance(audio, str):
# # Account for recorded audio
# audio = {
# "path": audio,
# "sampling_rate": 16_000,
# "array": librosa.load(audio, sr=16_000)[0]
# }
# elif audio["sampling_rate"] != 16_000:
# audio["array"] = librosa.resample(audio["array"], audio["sampling_rate"], 16_000)
# input_features = whisper_processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features
# predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=decoder_ids)
# translated_text = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# return translated_text
def synthesise(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(inputs["input_ids"])
speech = outputs["waveform"][0]
logging.info(speech)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
logging.info(f"Translated Text: {translated_text}")
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/preetam8/speecht5_finetuned_voxpopuli_fr) model for text-to-speech finetuned for french:

"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
logging.getLogger().setLevel(logging.INFO)
demo.launch() |