preetam8's picture
try new finetuned whisper model
e970d56
raw
history blame
3.63 kB
import gradio as gr
import librosa
import logging
import numpy as np
import torch
from transformers import VitsModel, VitsTokenizer, pipeline
from transformers import WhisperForConditionalGeneration, WhisperProcessor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
target_language = "fr"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device)
# whisper_model_name = "openai/whisper-small"
# whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
# whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
# decoder_ids = whisper_processor.get_decoder_prompt_ids(language=target_language, task="transcribe")
# load text-to-speech checkpoint
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": target_language})
return outputs["text"]
# def translate(audio):
# if isinstance(audio, str):
# # Account for recorded audio
# audio = {
# "path": audio,
# "sampling_rate": 16_000,
# "array": librosa.load(audio, sr=16_000)[0]
# }
# elif audio["sampling_rate"] != 16_000:
# audio["array"] = librosa.resample(audio["array"], audio["sampling_rate"], 16_000)
# input_features = whisper_processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features
# predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=decoder_ids)
# translated_text = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# return translated_text
def synthesise(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(inputs["input_ids"])
speech = outputs["waveform"][0]
logging.info(speech)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
logging.info(f"Translated Text: {translated_text}")
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/preetam8/speecht5_finetuned_voxpopuli_fr) model for text-to-speech finetuned for french:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
logging.getLogger().setLevel(logging.INFO)
demo.launch()