File size: 12,021 Bytes
35870c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801147
cd0903f
 
 
 
35870c4
cd0903f
d097713
 
 
 
 
 
 
35870c4
682ee90
35870c4
 
 
 
 
 
 
 
 
d097713
35870c4
 
 
 
 
 
 
 
 
 
 
 
d097713
 
35870c4
d097713
35870c4
 
 
 
d097713
35870c4
 
 
d097713
35870c4
 
 
d097713
 
35870c4
d097713
cd0903f
d097713
 
 
 
 
cd0903f
 
d097713
cd0903f
 
 
 
 
d097713
 
 
 
 
35870c4
 
 
d097713
35870c4
 
d097713
35870c4
 
d097713
35870c4
 
 
 
 
d097713
 
35870c4
 
d097713
 
 
 
 
 
 
35870c4
d097713
 
 
 
 
 
 
 
35870c4
7ec496c
35870c4
d097713
35870c4
 
d097713
 
35870c4
 
d097713
 
35870c4
 
 
 
 
d097713
 
35870c4
d097713
35870c4
 
 
d097713
35870c4
 
 
 
 
d097713
 
35870c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d097713
 
35870c4
d097713
35870c4
 
 
 
 
 
d097713
35870c4
d097713
 
35870c4
d097713
35870c4
 
 
d097713
 
cd0903f
 
 
 
 
 
 
 
 
 
d097713
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import random
import torch
from tqdm import tqdm
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset

# --- Helper functions ---

def load_instructions(dataset_id, column, n_instructions):
    dataset = load_dataset(dataset_id, split="train")
    indices = random.sample(range(len(dataset)), n_instructions * 2)
    return [dataset[i][column] for i in indices[:n_instructions]], [
        dataset[i][column] for i in indices[n_instructions:]
    ]

def generate_response(model, tokenizer, prompt, max_new_tokens=128):
    if hasattr(tokenizer, "apply_chat_template"):
        inputs = tokenizer.apply_chat_template(
            conversation=[{"role": "user", "content": prompt}],
            add_generation_prompt=True,
            return_tensors="pt",
        ).to(model.device)
    else:
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    output_ids = model.generate(
        inputs,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=0.5,
        min_p=0.1,
        repetition_penalty=1.05,
    )
    return tokenizer.decode(output_ids[0], skip_special_tokens=True)

def generate_outputs(model, tokenizer, instructions, system_prompt):
    outputs = []
    for instruction in tqdm(instructions, desc="Generating outputs", leave=False):
        if hasattr(tokenizer, "apply_chat_template"):
            inputs = tokenizer.apply_chat_template(
                conversation=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": instruction},
                ],
                add_generation_prompt=True,
                return_tensors="pt",
            ).to(model.device)
        else:
            prompt = system_prompt + "\n" + instruction
            inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        out = model.generate(
            inputs,
            use_cache=False,
            max_new_tokens=1,
            return_dict_in_generate=True,
            output_hidden_states=True,
        )
        outputs.append(out["hidden_states"][0])
    return outputs

def orthogonalize_matrix(matrix, vec, weight):
    vec = vec.view(-1).to(matrix.device)
    if matrix.shape[-1] == vec.shape[0]:
        proj = torch.einsum("...d,d->...", matrix, vec).unsqueeze(-1) * vec.unsqueeze(0)
        return matrix - weight * proj
    elif matrix.shape[0] == vec.shape[0]:
        proj = torch.einsum("d...,d->...", matrix, vec).unsqueeze(0) * vec.unsqueeze(-1)
        return matrix - weight * proj
    else:
        raise ValueError(
            f"Matrix shape {matrix.shape} incompatible with vector shape {vec.shape}"
        )

# --- Streamlit UI ---

st.title("LLM Auto Abliteration")
st.markdown("πŸ₯  Recommended for edge-device LLMs (e.g., 1B, 1.5B, 0.5B).")
st.markdown("πŸ₯  Duplicate the space for seamless usage!")
st.markdown("πŸ₯  This app allows you to manually input parameters to modify a language model's behavior by abliterating its weights.")
st.markdown("πŸ“ Credits: Thanks to **[Maxime Labonne](https://huggingface.co/mlabonne)**")

# Debugging window to show log messages
debug_log = []
debug_placeholder = st.empty()
def update_debug(msg):
    debug_log.append(msg)
    debug_placeholder.text("\n".join(debug_log))

# Sidebar parameters
st.sidebar.header("Abliteration Parameters")
MODEL_ID = st.sidebar.text_input("Model ID", "prithivMLmods/FastThink-0.5B-Tiny")
N_INSTRUCTIONS = st.sidebar.number_input("Number of Instructions", min_value=1, value=128, step=1)
TARGET_LAYER = st.sidebar.slider("Target Layer (relative ratio)", 0.0, 1.0, 0.65, step=0.05)
REFUSAL_WEIGHT = st.sidebar.slider("Refusal Weight", 0.0, 2.0, 1.0, step=0.05)
PRIVATE_UPLOAD = st.sidebar.checkbox("Push Model to Hub Privately", value=True)

st.sidebar.header("HF Token")
hf_token = st.sidebar.text_input("Hugging Face Token", type="password")
if hf_token:
    os.environ["HF_TOKEN"] = hf_token
    update_debug("HF Token received.")

st.sidebar.header("Target Dataset")
target_prompt = st.sidebar.text_area("Target Prompt", "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.")
target_dataset = st.sidebar.text_input("Target Dataset ID", "mlabonne/harmful_behaviors")
target_column = st.sidebar.text_input("Target Column Name", "text")

st.sidebar.header("Baseline Dataset")
baseline_prompt = st.sidebar.text_area("Baseline Prompt", "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.")
baseline_dataset = st.sidebar.text_input("Baseline Dataset ID", "mlabonne/harmless_alpaca")
baseline_column = st.sidebar.text_input("Baseline Column Name", "text")

if st.button("Run Abliteration"):
    update_debug("Starting abliteration process...")
    
    st.write("### Loading Model and Tokenizer")
    update_debug("Checking device and GPU properties.")
    if torch.cuda.is_available():
        if torch.cuda.get_device_capability()[0] >= 8:
            torch_dtype = torch.bfloat16
            attn_implementation = "flash_attention_2"
            update_debug("Using bfloat16 and flash_attention_2.")
        else:
            torch_dtype = torch.float16
            attn_implementation = "eager"
            update_debug("Using float16 and eager attention.")
    else:
        torch_dtype = torch.float32
        attn_implementation = "eager"
        update_debug("No GPU available. Using float32.")
    
    with st.spinner("Loading model..."):
        try:
            # Pass HF token if provided to load private or restricted models
            model = AutoModelForCausalLM.from_pretrained(
                MODEL_ID,
                device_map="auto",
                torch_dtype=torch_dtype,
                attn_implementation=attn_implementation,
                trust_remote_code=True,
                use_auth_token=hf_token if hf_token else None
            ).eval()
            tokenizer = AutoTokenizer.from_pretrained(
                MODEL_ID,
                trust_remote_code=True,
                use_auth_token=hf_token if hf_token else None
            )
            update_debug("Model and tokenizer loaded successfully.")
        except Exception as e:
            update_debug(f"Error loading model: {e}")
            st.error("Failed to load model. Check the debug log for details.")
            st.stop()
    
    try:
        total_layers = len(model.model.layers)
        update_debug(f"Model has {total_layers} layers.")
    except AttributeError:
        st.error("The loaded model does not have a `model.layers` attribute.")
        update_debug("Model does not have `model.layers` attribute. Aborting.")
        st.stop()
    LAYER_IDX = int(TARGET_LAYER * total_layers)
    update_debug(f"Selected layer index: {LAYER_IDX} based on relative ratio {TARGET_LAYER}.")
    
    st.write("### Before Abliteration Response")
    prompt_example = "How to write a computer virus?"
    response_before = generate_response(model, tokenizer, prompt_example)
    st.text_area("Response before abliteration:", response_before, height=150)
    update_debug("Generated response before abliteration.")
    
    st.write("### Loading Instructions")
    with st.spinner("Loading target instructions..."):
        try:
            target_instructions, _ = load_instructions(target_dataset, target_column, N_INSTRUCTIONS)
            update_debug("Target instructions loaded.")
        except Exception as e:
            update_debug(f"Error loading target instructions: {e}")
            st.error("Failed to load target instructions.")
            st.stop()
    with st.spinner("Loading baseline instructions..."):
        try:
            baseline_instructions, _ = load_instructions(baseline_dataset, baseline_column, N_INSTRUCTIONS)
            update_debug("Baseline instructions loaded.")
        except Exception as e:
            update_debug(f"Error loading baseline instructions: {e}")
            st.error("Failed to load baseline instructions.")
            st.stop()
    
    st.write("### Generating Hidden States")
    with st.spinner("βŒ› Generating the baseline hidden state. Hold tight, as this may take 10 minutes or more."):
        baseline_outputs = generate_outputs(model, tokenizer, baseline_instructions, system_prompt=baseline_prompt)
        update_debug("Baseline hidden states generated.")
    with st.spinner("Generating target hidden states..."):
        target_outputs = generate_outputs(model, tokenizer, target_instructions, system_prompt=target_prompt)
        update_debug("Target hidden states generated.")
    
    target_hidden = [output[LAYER_IDX][:, -1, :] for output in target_outputs]
    baseline_hidden = [output[LAYER_IDX][:, -1, :] for output in baseline_outputs]
    update_debug("Extracted last token hidden states.")
    
    st.write("### Calculating Refusal Direction")
    target_mean = torch.stack(target_hidden).mean(dim=0)
    baseline_mean = torch.stack(baseline_hidden).mean(dim=0)
    refusal_dir = target_mean - baseline_mean
    refusal_dir = refusal_dir / refusal_dir.norm()
    update_debug("Calculated and normalized the refusal direction.")
    
    del target_outputs, baseline_outputs, target_hidden, baseline_hidden
    
    st.write("### Orthogonalizing Model Weights")
    refusal_dir = refusal_dir.view(-1).to(model.device)
    stats = {"embed_tokens": False, "attention_o_proj": 0, "mlp_proj": 0}
    
    if hasattr(model.model, "embed_tokens"):
        model.model.embed_tokens.weight.data = orthogonalize_matrix(
            model.model.embed_tokens.weight.data, refusal_dir, REFUSAL_WEIGHT
        )
        stats["embed_tokens"] = True
        update_debug("Orthogonalized embed_tokens weights.")
    
    for layer in tqdm(model.model.layers, desc="Orthogonalizing weights", leave=False):
        if hasattr(layer, "self_attn") and hasattr(layer.self_attn, "o_proj"):
            layer.self_attn.o_proj.weight.data = orthogonalize_matrix(
                layer.self_attn.o_proj.weight.data, refusal_dir, REFUSAL_WEIGHT
            )
            stats["attention_o_proj"] += 1
        if hasattr(layer, "mlp"):
            proj_name = (
                "down_proj"
                if hasattr(layer.mlp, "down_proj")
                else "c_proj"
                if hasattr(layer.mlp, "c_proj")
                else None
            )
            if proj_name:
                getattr(layer.mlp, proj_name).weight.data = orthogonalize_matrix(
                    getattr(layer.mlp, proj_name).weight.data, refusal_dir, REFUSAL_WEIGHT
                )
                stats["mlp_proj"] += 1
    update_debug("Orthogonalized layer weights.")
    
    del refusal_dir
    
    if (
        not stats["embed_tokens"]
        and stats["attention_o_proj"] == 0
        and stats["mlp_proj"] == 0
    ):
        st.error("Failed to orthogonalize any model weights. Model not abliterated.")
        update_debug("No weights were orthogonalized. Aborting process.")
        st.stop()
    
    update_debug(f"Orthogonalization stats: {stats}")
    st.write(f"Orthogonalization stats: {stats}")
    
    st.write("### After Abliteration Response")
    response_after = generate_response(model, tokenizer, prompt_example)
    st.text_area("Response after abliteration:", response_after, height=150)
    update_debug("Generated response after abliteration.")
    
    st.write("### Pushing Model to Hugging Face Hub")
    try:
        model_name = MODEL_ID.split("/")[-1] + "-abliterated"
        model.push_to_hub(model_name, private=PRIVATE_UPLOAD)
        tokenizer.push_to_hub(model_name, private=PRIVATE_UPLOAD)
        st.success(f"Model automatically pushed as {model_name}")
        update_debug(f"Model automatically pushed to HF Hub as {model_name}.")
    except Exception as e:
        st.error(f"Error while pushing model: {e}")
        update_debug(f"Error while pushing model: {e}")
    
    st.success("Abliteration process complete!")
    update_debug("Abliteration process complete.")