File size: 19,019 Bytes
235f049
 
 
 
 
 
 
 
 
 
 
 
e817668
235f049
 
 
 
e817668
 
235f049
e817668
235f049
 
 
e817668
 
 
 
 
 
235f049
 
 
 
 
 
 
e817668
 
 
235f049
e817668
235f049
 
e817668
235f049
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235f049
 
e817668
235f049
 
 
 
 
 
 
 
 
e817668
235f049
 
 
 
 
 
e817668
0e5cdf9
 
e817668
 
 
0e5cdf9
 
 
 
 
 
 
 
 
e817668
0e5cdf9
 
e817668
0e5cdf9
4699b28
0e5cdf9
 
e817668
0e5cdf9
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e817668
 
 
 
 
 
0e5cdf9
e817668
0e5cdf9
 
 
e817668
 
 
 
 
 
 
0e5cdf9
 
 
 
 
 
e817668
0e5cdf9
e817668
0e5cdf9
e817668
0e5cdf9
e817668
 
0e5cdf9
e817668
 
 
 
 
 
 
0e5cdf9
 
 
 
 
 
 
 
 
 
 
e817668
 
 
 
 
0e5cdf9
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
235f049
 
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235f049
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235f049
 
 
 
 
 
 
 
 
 
e817668
235f049
e817668
235f049
e817668
235f049
e817668
 
235f049
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235f049
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235f049
 
e817668
235f049
 
e817668
235f049
 
 
 
e817668
 
 
 
 
235f049
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cdf9
e817668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235f049
 
e817668
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    VisionEncoderDecoderModel,
    AutoModelForVision2Seq,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

from docling_core.types.doc import DoclingDocument, DocTagsDocument

import re
import ast
import html

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load olmOCR-7B-0225-preview
MODEL_ID_M = "allenai/olmOCR-7B-0225-preview"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load ByteDance's Dolphin
MODEL_ID_K = "ByteDance/Dolphin"
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
model_k = VisionEncoderDecoderModel.from_pretrained(
    MODEL_ID_K,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Preprocessing functions for SmolDocling-256M
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
    """Add random padding to an image based on its size."""
    image = image.convert("RGB")
    width, height = image.size
    pad_w_percent = random.uniform(min_percent, max_percent)
    pad_h_percent = random.uniform(min_percent, max_percent)
    pad_w = int(width * pad_w_percent)
    pad_h = int(height * pad_h_percent)
    corner_pixel = image.getpixel((0, 0))  # Top-left corner
    padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
    return padded_image

def normalize_values(text, target_max=500):
    """Normalize numerical values in text to a target maximum."""
    def normalize_list(values):
        max_value = max(values) if values else 1
        return [round((v / max_value) * target_max) for v in values]

    def process_match(match):
        num_list = ast.literal_eval(match.group(0))
        normalized = normalize_list(num_list)
        return "".join([f"<loc_{num}>" for num in normalized])

    pattern = r"\[([\d\.\s,]+)\]"
    normalized_text = re.sub(pattern, process_match, text)
    return normalized_text

def downsample_video(video_path):
    """Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# Dolphin-specific functions
def model_chat(prompt, image, is_batch=False):
    """Use Dolphin model for inference, supporting both single and batch processing."""
    processor = processor_k
    model = model_k
    device = "cuda" if torch.cuda.is_available() else "cpu"

    if not is_batch:
        images = [image]
        prompts = [prompt]
    else:
        images = image
        prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)

    inputs = processor(images, return_tensors="pt", padding=True).to(device)
    pixel_values = inputs.pixel_values.half()

    prompts = [f"<s>{p} <Answer/>" for p in prompts]
    prompt_inputs = processor.tokenizer(
        prompts,
        add_special_tokens=False,  # Explicitly set to False
        return_tensors="pt",
        padding=True
    ).to(device)

    outputs = model.generate(
        pixel_values=pixel_values,
        decoder_input_ids=prompt_inputs.input_ids,
        decoder_attention_mask=prompt_inputs.attention_mask,
        min_length=1,
        max_length=4096,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
        do_sample=False,
        num_beams=1,
        repetition_penalty=1.1
    )
    sequences = processor.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
    
    results = []
    for i, sequence in enumerate(sequences):
        cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
        results.append(cleaned)

    return results[0] if not is_batch else results

def process_element_batch(elements, prompt, max_batch_size=16):
    """Process a batch of elements with the same prompt."""
    results = []
    batch_size = min(len(elements), max_batch_size)

    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i + batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        prompts_list = [prompt] * len(crops_list)
        
        batch_results = model_chat(prompts_list, crops_list, is_batch=True)
        
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
    
    return results

def process_elements(layout_results, image):
    """Parse layout results and extract elements from the image."""
    try:
        elements = ast.literal_eval(layout_results)
    except:
        elements = []
    
    text_elements = []
    table_elements = []
    figure_results = []
    reading_order = 0
    
    for bbox, label in elements:
        try:
            x1, y1, x2, y2 = map(int, bbox)
            cropped = image.crop((x1, y1, x2, y2))
            if cropped.size[0] > 0 and cropped.size[1] > 0:
                element_info = {
                    "crop": cropped,
                    "label": label,
                    "bbox": [x1, y1, x2, y2],
                    "reading_order": reading_order,
                }
                if label == "text":
                    text_elements.append(element_info)
                elif label == "table":
                    table_elements.append(element_info)
                elif label == "figure":
                    figure_results.append({
                        "label": label,
                        "bbox": [x1, y1, x2, y2],
                        "text": "[Figure]",
                        "reading_order": reading_order
                    })
            reading_order += 1
        except Exception as e:
            print(f"Error processing element: {e}")
            continue
    
    recognition_results = figure_results.copy()
    
    if text_elements:
        text_results = process_element_batch(text_elements, "Read text in the image.")
        recognition_results.extend(text_results)
    
    if table_elements:
        table_results = process_element_batch(table_elements, "Parse the table in the image.")
        recognition_results.extend(table_results)
    
    recognition_results.sort(key=lambda x: x["reading_order"])
    return recognition_results

def generate_markdown(recognition_results):
    """Generate markdown from extracted elements."""
    markdown = ""
    for element in recognition_results:
        if element["label"] == "text":
            markdown += f"{element['text']}\n\n"
        elif element["label"] == "table":
            markdown += f"**Table:**\n{element['text']}\n\n"
        elif element["label"] == "figure":
            markdown += f"{element['text']}\n\n"
    return markdown.strip()

def process_image_with_dolphin(image):
    """Process a single image with Dolphin model."""
    layout_output = model_chat("Parse the reading order of this document.", image)
    elements = process_elements(layout_output, image)
    markdown_content = generate_markdown(elements)
    return markdown_content

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """Generate responses for image input using the selected model."""
    if model_name == "ByteDance-s-Dolphin":
        if image is None:
            yield "Please upload an image."
            return
        markdown_content = process_image_with_dolphin(image)
        yield markdown_content
    else:
        if model_name == "olmOCR-7B-0225-preview":
            processor = processor_m
            model = model_m
        elif model_name == "SmolDocling-256M-preview":
            processor = processor_x
            model = model_x
        else:
            yield "Invalid model selected."
            return

        if image is None:
            yield "Please upload an image."
            return

        images = [image]

        if model_name == "SmolDocling-256M-preview":
            if "OTSL" in text or "code" in text:
                images = [add_random_padding(img) for img in images]
            if "OCR at text at" in text or "Identify element" in text or "formula" in text:
                text = normalize_values(text, target_max=500)

        messages = [
            {
                "role": "user",
                "content": [{"type": "image"} for _ in images] + [
                    {"type": "text", "text": text}
                ]
            }
        ]
        prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
        inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)

        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        full_output = ""
        for new_text in streamer:
            full_output += new_text
            buffer += new_text.replace("<|im_end|>", "")
            yield buffer

        if model_name == "SmolDocling-256M-preview":
            cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
            if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
                if "<chart>" in cleaned_output:
                    cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
                    cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
                doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
                doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
                markdown_output = doc.export_to_markdown()
                yield f"**MD Output:**\n\n{markdown_output}"
            else:
                yield cleaned_output

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """Generate responses for video input using the selected model."""
    if model_name == "ByteDance-s-Dolphin":
        if video_path is None:
            yield "Please upload a video."
            return
        frames = downsample_video(video_path)
        markdown_contents = []
        for frame, _ in frames:
            markdown_content = process_image_with_dolphin(frame)
            markdown_contents.append(markdown_content)
        combined_markdown = "\n\n".join(markdown_contents)
        yield combined_markdown
    else:
        if model_name == "olmOCR-7B-0225-preview":
            processor = processor_m
            model = model_m
        elif model_name == "SmolDocling-256M-preview":
            processor = processor_x
            model = model_x
        else:
            yield "Invalid model selected."
            return

        if video_path is None:
            yield "Please upload a video."
            return

        frames = downsample_video(video_path)
        images = [frame for frame, _ in frames]

        if model_name == "SmolDocling-256M-preview":
            if "OTSL" in text or "code" in text:
                images = [add_random_padding(img) for img in images]
            if "OCR at text at" in text or "Identify element" in text or "formula" in text:
                text = normalize_values(text, target_max=500)

        messages = [
            {
                "role": "user",
                "content": [{"type": "image"} for _ in images] + [
                    {"type": "text", "text": text}
                ]
            }
        ]
        prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
        inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)

        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        full_output = ""
        for new_text in streamer:
            full_output += new_text
            buffer += new_text.replace("<|im_end|>", "")
            yield buffer

        if model_name == "SmolDocling-256M-preview":
            cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
            if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
                if "<chart>" in cleaned_output:
                    cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
                    cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
                doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
                doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
                markdown_output = doc.export_to_markdown()
                yield f"**MD Output:**\n\n{markdown_output}"
            else:
                yield cleaned_output

# Define examples for image and video inference
image_examples = [
    ["Convert this page to docling", "images/1.png"],
    ["OCR the image", "images/2.jpg"],
    ["Convert this page to docling", "images/3.png"],
]

video_examples = [
    ["Explain the ad in detail", "example/1.mp4"],
    ["Identify the main actions in the coca cola ad...", "example/2.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Docling-VLMs](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False, lines=3, scale=2)
            model_choice = gr.Radio(
                choices=["olmOCR-7B-0225-preview", "SmolDocling-256M-preview", "ByteDance-s-Dolphin"],
                label="Select Model",
                value="olmOCR-7B-0225-preview"
            )
            
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)