Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image, ImageDraw | |
import cv2 | |
import re | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from transformers.image_utils import load_image | |
# Constants for text generation | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load Camel-Doc-OCR-062825 | |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load Qwen2.5-VL-7B-Instruct | |
MODEL_ID_X = "Qwen/Qwen2.5-VL-7B-Instruct" | |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_X, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load Qwen2.5-VL-3B-Instruct | |
MODEL_ID_T = "Qwen/Qwen2.5-VL-3B-Instruct" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to evenly spaced frames. | |
Each frame is returned as a PIL image along with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): | |
draw = ImageDraw.Draw(image) | |
for box in bounding_boxes: | |
xmin, ymin, xmax, ymax = box | |
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) | |
return image | |
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): | |
x_scale = original_width / scaled_width | |
y_scale = original_height / scaled_height | |
rescaled_boxes = [] | |
for box in bounding_boxes: | |
xmin, ymin, xmax, ymax = box | |
rescaled_box = [ | |
xmin * x_scale, | |
ymin * y_scale, | |
xmax * x_scale, | |
ymax * y_scale | |
] | |
rescaled_boxes.append(rescaled_box) | |
return rescaled_boxes | |
def generate_image(model_name: str, text: str, image: Image.Image, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for image input. | |
""" | |
if model_name == "Camel-Doc-OCR-062825": | |
processor = processor_m | |
model = model_m | |
elif model_name == "Qwen2.5-VL-7B-Instruct": | |
processor = processor_x | |
model = model_x | |
elif model_name == "Qwen2.5-VL-3B-Instruct": | |
processor = processor_t | |
model = model_t | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if image is None: | |
yield "Please upload an image.", "Please upload an image." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer, buffer | |
def generate_video(model_name: str, text: str, video_path: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for video input. | |
""" | |
if model_name == "Camel-Doc-OCR-062825": | |
processor = processor_m | |
model = model_m | |
elif model_name == "Qwen2.5-VL-7B-Instruct": | |
processor = processor_x | |
model = model_x | |
elif model_name == "Qwen2.5-VL-3B-Instruct": | |
processor = processor_t | |
model = model_t | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if video_path is None: | |
yield "Please upload a video.", "Please upload a video." | |
return | |
frames = downsample_video(video_path) | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": text}]} | |
] | |
for frame in frames: | |
image, timestamp = frame | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "image": image}) | |
inputs = processor.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer, buffer | |
def run_object_detection(model_name: str, image: Image.Image, text_input: str, system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
if model_name == "Camel-Doc-OCR-062825": | |
processor = processor_m | |
model = model_m | |
elif model_name == "Qwen2.5-VL-7B-Instruct": | |
processor = processor_x | |
model = model_x | |
elif model_name == "Qwen2.5-VL-3B-Instruct": | |
processor = processor_t | |
model = model_t | |
else: | |
return "Invalid model selected.", "", image | |
if image is None: | |
return "Please upload an image.", "", image | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": system_prompt}, | |
{"type": "text", "text": text_input}, | |
{"type": "image", "image": image}, | |
], | |
} | |
] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
generation_kwargs = { | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
generated_ids = model.generate(**inputs, **generation_kwargs) | |
generated_ids_trimmed = generated_ids[:, inputs["input_ids"].shape[1]:] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]' | |
matches = re.findall(pattern, output_text) | |
parsed_boxes = [[int(num) for num in match] for match in matches] | |
original_width, original_height = image.size | |
scaled_boxes = rescale_bounding_boxes(parsed_boxes, original_width, original_height) | |
annotated_image = draw_bounding_boxes(image.copy(), scaled_boxes) | |
return output_text, str(parsed_boxes), annotated_image | |
# Define examples for image and video inference | |
image_examples = [ | |
["Convert this page to doc [text] precisely.", "images/3.png"], | |
["Convert this page to doc [text] precisely.", "images/4.png"], | |
["Convert this page to doc [text] precisely.", "images/1.png"], | |
["Convert chart to OTSL.", "images/2.png"] | |
] | |
video_examples = [ | |
["Explain the video in detail.", "videos/2.mp4"], | |
["Explain the ad in detail.", "videos/1.mp4"] | |
] | |
# Define examples for object detection | |
default_system_prompt = "You are a helpful assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] with the values being scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]." | |
object_detection_examples = [ | |
["images/3.png", "Detect all text blocks", default_system_prompt], | |
["images/4.png", "Find all images", default_system_prompt], | |
["images/1.png", "Locate the headers", default_system_prompt], | |
["images/2.png", "Detect the chart", default_system_prompt], | |
] | |
# Added CSS to style the output area as a "Canvas" | |
css = """ | |
.submit-btn { | |
background-color: #2980b9 !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #3498db !important; | |
} | |
.canvas-output { | |
border: 2px solid #4682B4; | |
border-radius: 10px; | |
padding: 20px; | |
} | |
""" | |
# Create the Gradio Interface | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown("# **[Doc-VLMs-v2-Localization](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**") | |
with gr.Row(): | |
with gr.Column(): | |
model_choice = gr.Radio( | |
choices=["Camel-Doc-OCR-062825", "Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct"], | |
label="Select Model", | |
value="Camel-Doc-OCR-062825" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Image Inference"): | |
with gr.Row(): | |
with gr.Column(): | |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
image_upload = gr.Image(type="pil", label="Image") | |
image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
gr.Examples( | |
examples=image_examples, | |
inputs=[image_query, image_upload] | |
) | |
with gr.Column(): | |
output_image = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2) | |
markdown_output_image = gr.Markdown(label="Formatted Result (Result.Md)") | |
with gr.TabItem("Video Inference"): | |
with gr.Row(): | |
with gr.Column(): | |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
video_upload = gr.Video(label="Video") | |
video_submit = gr.Button("Submit", elem_classes="submit-btn") | |
gr.Examples( | |
examples=video_examples, | |
inputs=[video_query, video_upload] | |
) | |
with gr.Column(): | |
output_video = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2) | |
markdown_output_video = gr.Markdown(label="Formatted Result (Result.Md)") | |
with gr.TabItem("Object Detection"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Image", type="pil") | |
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt) | |
text_input = gr.Textbox(label="User Prompt") | |
object_detection_submit = gr.Button("Submit", elem_classes="submit-btn") | |
gr.Examples( | |
examples=object_detection_examples, | |
inputs=[input_img, text_input, system_prompt] | |
) | |
with gr.Column(): | |
model_output_text = gr.Textbox(label="Model Output Text") | |
parsed_boxes = gr.Textbox(label="Parsed Boxes") | |
annotated_image = gr.Image(label="Annotated Image") | |
with gr.Accordion("Advanced options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
image_submit.click( | |
fn=generate_image, | |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[output_image, markdown_output_image] | |
) | |
video_submit.click( | |
fn=generate_video, | |
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[output_video, markdown_output_video] | |
) | |
object_detection_submit.click( | |
fn=run_object_detection, | |
inputs=[model_choice, input_img, text_input, system_prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[model_output_text, parsed_boxes, annotated_image] | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |