Doc-VLMs-OCR / app.py
prithivMLmods's picture
Update app.py
7d955b3 verified
raw
history blame
15.8 kB
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageDraw
import cv2
import re
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-7B-Instruct
MODEL_ID_X = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-3B-Instruct
MODEL_ID_T = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
draw = ImageDraw.Draw(image)
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
return image
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
x_scale = original_width / scaled_width
y_scale = original_height / scaled_height
rescaled_boxes = []
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
rescaled_box = [
xmin * x_scale,
ymin * y_scale,
xmax * x_scale,
ymax * y_scale
]
rescaled_boxes.append(rescaled_box)
return rescaled_boxes
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_t
model = model_t
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_t
model = model_t
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def run_object_detection(model_name: str, image: Image.Image, text_input: str, system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_t
model = model_t
else:
return "Invalid model selected.", "", image
if image is None:
return "Please upload an image.", "", image
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": system_prompt},
{"type": "text", "text": text_input},
{"type": "image", "image": image},
],
}
]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
generated_ids = model.generate(**inputs, **generation_kwargs)
generated_ids_trimmed = generated_ids[:, inputs["input_ids"].shape[1]:]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
matches = re.findall(pattern, output_text)
parsed_boxes = [[int(num) for num in match] for match in matches]
original_width, original_height = image.size
scaled_boxes = rescale_bounding_boxes(parsed_boxes, original_width, original_height)
annotated_image = draw_bounding_boxes(image.copy(), scaled_boxes)
return output_text, str(parsed_boxes), annotated_image
# Define examples for image and video inference
image_examples = [
["Convert this page to doc [text] precisely.", "images/3.png"],
["Convert this page to doc [text] precisely.", "images/4.png"],
["Convert this page to doc [text] precisely.", "images/1.png"],
["Convert chart to OTSL.", "images/2.png"]
]
video_examples = [
["Explain the video in detail.", "videos/2.mp4"],
["Explain the ad in detail.", "videos/1.mp4"]
]
# Define examples for object detection
default_system_prompt = "You are a helpful assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] with the values being scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
object_detection_examples = [
["images/3.png", "Detect all text blocks", default_system_prompt],
["images/4.png", "Find all images", default_system_prompt],
["images/1.png", "Locate the headers", default_system_prompt],
["images/2.png", "Detect the chart", default_system_prompt],
]
# Added CSS to style the output area as a "Canvas"
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Doc-VLMs-v2-Localization](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
model_choice = gr.Radio(
choices=["Camel-Doc-OCR-062825", "Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct"],
label="Select Model",
value="Camel-Doc-OCR-062825"
)
with gr.Tabs():
with gr.TabItem("Image Inference"):
with gr.Row():
with gr.Column():
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.Column():
output_image = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
markdown_output_image = gr.Markdown(label="Formatted Result (Result.Md)")
with gr.TabItem("Video Inference"):
with gr.Row():
with gr.Column():
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Column():
output_video = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
markdown_output_video = gr.Markdown(label="Formatted Result (Result.Md)")
with gr.TabItem("Object Detection"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image", type="pil")
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt)
text_input = gr.Textbox(label="User Prompt")
object_detection_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=object_detection_examples,
inputs=[input_img, text_input, system_prompt]
)
with gr.Column():
model_output_text = gr.Textbox(label="Model Output Text")
parsed_boxes = gr.Textbox(label="Parsed Boxes")
annotated_image = gr.Image(label="Annotated Image")
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output_image, markdown_output_image]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output_video, markdown_output_video]
)
object_detection_submit.click(
fn=run_object_detection,
inputs=[model_choice, input_img, text_input, system_prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[model_output_text, parsed_boxes, annotated_image]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)