Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import ( | |
Qwen2VLForConditionalGeneration, | |
Qwen2_5_VLForConditionalGeneration, | |
Gemma3ForConditionalGeneration, | |
AutoModelForImageTextToText, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from transformers.image_utils import load_image | |
# Optionally enable synchronous CUDA errors for debugging: | |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
# Constants for text generation | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# ------------------------------------------------------------------- | |
# Load models and processors | |
# ------------------------------------------------------------------- | |
# VIREX (Video Information Retrieval & Extraction) | |
MODEL_ID_VIREX = "prithivMLmods/VIREX-062225-exp" | |
processor_virex = AutoProcessor.from_pretrained(MODEL_ID_VIREX, trust_remote_code=True) | |
model_virex = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_VIREX, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# DREX (Document Retrieval & Extraction Expert) | |
MODEL_ID_DREX = "prithivMLmods/DREX-062225-exp" | |
processor_drex = AutoProcessor.from_pretrained(MODEL_ID_DREX, trust_remote_code=True) | |
model_drex = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_DREX, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Typhoon-OCR-3B (Thai/English OCR parser) | |
MODEL_ID_TYPHOON = "sarvamai/sarvam-translate" | |
processor_typhoon = AutoProcessor.from_pretrained(MODEL_ID_TYPHOON, trust_remote_code=True) | |
model_typhoon = Gemma3ForConditionalGeneration.from_pretrained( | |
MODEL_ID_TYPHOON, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# olmOCR-7B-0225-preview (document OCR + LaTeX) | |
MODEL_ID_OLM = "allenai/olmOCR-7B-0225-preview" | |
processor_olm = AutoProcessor.from_pretrained(MODEL_ID_OLM, trust_remote_code=True) | |
model_olm = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_OLM, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# ------------------------------------------------------------------- | |
# Video downsampling helper | |
# ------------------------------------------------------------------- | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to 10 evenly spaced frames. | |
Returns a list of (PIL.Image, timestamp) tuples. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) or 30.0 | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for idx in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx) | |
success, img = vidcap.read() | |
if not success: | |
continue | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
frames.append((Image.fromarray(img), round(idx / fps, 2))) | |
vidcap.release() | |
return frames | |
# ------------------------------------------------------------------- | |
# Generation loops | |
# ------------------------------------------------------------------- | |
def _make_generation_kwargs(processor, inputs, streamer, max_new_tokens, do_sample=False, temperature=1.0, top_p=1.0, top_k=0, repetition_penalty=1.0): | |
# ensure pad/eos tokens are defined | |
tok = processor.tokenizer | |
return { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": do_sample, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
"pad_token_id": tok.eos_token_id, | |
"eos_token_id": tok.eos_token_id, | |
} | |
def generate_image(model_name: str, text: str, image: Image.Image, | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
# select | |
if model_name.startswith("VIREX"): | |
processor, model = processor_virex, model_virex | |
elif model_name.startswith("DREX"): | |
processor, model = processor_drex, model_drex | |
elif model_name.startswith("olmOCR"): | |
processor, model = processor_olm, model_olm | |
elif model_name.startswith("Typhoon"): | |
processor, model = processor_typhoon, model_typhoon | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if image is None: | |
yield "Please upload an image.", "" | |
return | |
# build the chat-style prompt | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = _make_generation_kwargs( | |
processor, inputs, streamer, max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty | |
) | |
# launch | |
Thread(target=model.generate, kwargs=gen_kwargs).start() | |
buffer = "" | |
for chunk in streamer: | |
buffer += chunk | |
yield buffer, buffer | |
def generate_video(model_name: str, text: str, video_path: str, | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
# select model | |
if model_name.startswith("VIREX"): | |
processor, model = processor_virex, model_virex | |
elif model_name.startswith("DREX"): | |
processor, model = processor_drex, model_drex | |
elif model_name.startswith("olmOCR"): | |
processor, model = processor_olm, model_olm | |
elif model_name.startswith("Typhoon"): | |
processor, model = processor_typhoon, model_typhoon | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if video_path is None: | |
yield "Please upload a video.", "" | |
return | |
# downsample frames | |
frames = downsample_video(video_path) | |
# system + user | |
messages = [ | |
{"role": "system", "content": [{"type":"text", "text":"You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type":"text", "text": text}]} | |
] | |
for img, ts in frames: | |
messages[1]["content"].append({"type":"text", "text":f"Frame {ts}s:"}) | |
messages[1]["content"].append({"type":"image", "image":img}) | |
inputs = processor.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = _make_generation_kwargs( | |
processor, inputs, streamer, max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty | |
) | |
Thread(target=model.generate, kwargs=gen_kwargs).start() | |
buffer = "" | |
for chunk in streamer: | |
buffer += chunk.replace("<|im_end|>", "") | |
yield buffer, buffer | |
# ------------------------------------------------------------------- | |
# Examples, CSS, and launch | |
# ------------------------------------------------------------------- | |
image_examples = [ | |
["Convert this page to doc [text] precisely.", "images/3.png"], | |
["Convert this page to doc [text] precisely.", "images/4.png"], | |
["Convert this page to doc [text] precisely.", "images/1.png"], | |
["Convert chart to OTSL.", "images/2.png"] | |
] | |
video_examples = [ | |
["Explain the video in detail.", "videos/2.mp4"], | |
["Explain the ad in detail.", "videos/1.mp4"] | |
] | |
css = """ | |
.submit-btn { | |
background-color: #2980b9 !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #3498db !important; | |
} | |
.canvas-output { | |
border: 2px solid #4682B4; | |
border-radius: 10px; | |
padding: 20px; | |
} | |
""" | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown("# **[Doc VLMs OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.TabItem("Image Inference"): | |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
image_upload = gr.Image(type="pil", label="Image") | |
image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
gr.Examples(examples=image_examples, inputs=[image_query, image_upload]) | |
with gr.TabItem("Video Inference"): | |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
video_upload = gr.Video(label="Video") | |
video_submit = gr.Button("Submit", elem_classes="submit-btn") | |
gr.Examples(examples=video_examples, inputs=[video_query, video_upload]) | |
with gr.Accordion("Advanced options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
with gr.Column(elem_classes="canvas-output"): | |
gr.Markdown("## Result Canvas") | |
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2) | |
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)") | |
model_choice = gr.Radio( | |
choices=["DREX-062225-7B-exp", "olmOCR-7B-0225-preview", "VIREX-062225-7B-exp", "Typhoon-OCR-3B"], | |
label="Select Model", | |
value="DREX-062225-7B-exp" | |
) | |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs/discussions)") | |
gr.Markdown("> [DREX-062225-7B-exp](https://huggingface.co/prithivMLmods/DREX-062225-exp): ...") | |
gr.Markdown("> [VIREX-062225-7B-exp](https://huggingface.co/prithivMLmods/VIREX-062225-exp): ...") | |
gr.Markdown("> [Typhoon-OCR-3B](https://huggingface.co/scb10x/typhoon-ocr-3b): ...") | |
gr.Markdown("> [olmOCR-7B-0225](https://huggingface.co/allenai/olmOCR-7B-0225-preview): ...") | |
gr.Markdown("> ⚠️ note: video inference may be less reliable.") | |
image_submit.click( | |
fn=generate_image, | |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[output, markdown_output] | |
) | |
video_submit.click( | |
fn=generate_video, | |
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[output, markdown_output] | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |