Doc-VLMs-OCR / app.py
prithivMLmods's picture
Update app.py
f022e05 verified
raw
history blame
5.12 kB
import gradio as gr
import torch
import numpy as np
import cv2
import spaces
import time
import re
from PIL import Image
from threading import Thread
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
#####################################
# 1. Load Model & Processor
#####################################
MODEL_ID = "google/gemma-3-12b-it" # Adjust model ID as needed
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Gemma3ForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda")
model.eval()
#####################################
# 2. Helper Function: Get a Working Camera
#####################################
def get_working_camera():
"""
Tries camera indices 0, 1, and 2 until a working camera is found.
Returns the VideoCapture object or None if no camera can be opened.
"""
for i in range(3):
cap = cv2.VideoCapture(i)
if cap.isOpened():
return cap
return None
#####################################
# 3. Helper Function: Capture Live Frames
#####################################
def capture_live_frames(duration=5, num_frames=10):
"""
Captures live frames from a working webcam for a specified duration.
Returns a list of (PIL Image, timestamp) tuples.
"""
cap = get_working_camera()
if cap is None:
return [] # No working camera found
# Try to get FPS; default to 30 if not available.
fps = cap.get(cv2.CAP_PROP_FPS)
if fps <= 0:
fps = 30
total_frames_to_capture = int(duration * fps)
frame_indices = np.linspace(0, total_frames_to_capture - 1, num_frames, dtype=int)
captured_frames = []
frame_count = 0
start_time = time.time()
while frame_count < total_frames_to_capture:
ret, frame = cap.read()
if not ret:
break
if frame_count in frame_indices:
# Convert from BGR to RGB for PIL
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
timestamp = round(frame_count / fps, 2)
captured_frames.append((pil_image, timestamp))
frame_count += 1
if time.time() - start_time > duration:
break
cap.release()
return captured_frames
#####################################
# 4. Live Inference Function
#####################################
@spaces.GPU
def live_inference(duration=5):
"""
Captures live frames from the webcam, builds a prompt, and returns the generated text.
"""
frames = capture_live_frames(duration=duration, num_frames=10)
if not frames:
return "Could not capture live frames from the webcam."
# Build prompt using captured frames and timestamps.
messages = [{
"role": "user",
"content": [{"type": "text", "text": "Please describe what's happening in this live video."}]
}]
for (image, ts) in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
messages[0]["content"].append({"type": "image", "image": image})
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
frame_images = [img for (img, _) in frames]
inputs = processor(
text=[prompt],
images=frame_images,
return_tensors="pt",
padding=True
).to("cuda")
# Generate text output using a streaming approach.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
time.sleep(0.01)
return generated_text
#####################################
# 5. Build Gradio Live App
#####################################
def build_live_app():
with gr.Blocks() as demo:
gr.Markdown("# **Live Video Analysis**\n\nPress **Start** to capture a few seconds of live video from your webcam and analyze the content.")
with gr.Column():
duration_input = gr.Number(label="Capture Duration (seconds)", value=5, precision=0)
start_btn = gr.Button("Start")
output_text = gr.Textbox(label="Model Output")
restart_btn = gr.Button("Start Again", visible=False)
# Function to trigger live inference and reveal the restart button
def start_inference(duration):
text = live_inference(duration)
return text, gr.update(visible=True)
start_btn.click(fn=start_inference, inputs=duration_input, outputs=[output_text, restart_btn])
restart_btn.click(fn=start_inference, inputs=duration_input, outputs=[output_text, restart_btn])
return demo
if __name__ == "__main__":
app = build_live_app()
app.launch(debug=True, share=True)