DocScope-R1 / app.py
prithivMLmods's picture
Update app.py
c6a1ef4 verified
raw
history blame
7.87 kB
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load multimodal processor and model (Callisto OCR3)
MODEL_ID = "nvidia/Cosmos-Reason1-7B"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a light cyan animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
@spaces.GPU
def generate(text: str, files: list,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the Qwen2VL model for image and video inputs.
- If images are provided, performs image inference.
- If videos are provided, performs video inference by downsampling to frames.
"""
if not files:
yield "Please upload an image or video for inference."
return
# Determine if the files are images or videos
image_files = [f for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
video_files = [f for f in files if f.lower().endswith(('.mp4', '.avi', '.mov', '.mkv'))]
if image_files and video_files:
yield "Please upload either images or videos, not both."
return
if image_files:
# Image inference
images = [load_image(image) for image in image_files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=images,
return_tensors="pt",
padding=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing images with cosmos-reasoning")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
elif video_files:
# Video inference
video_path = video_files[0] # Assuming only one video is uploaded
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
# Append each frame with its timestamp.
for frame in frames:
image, timestamp = frame
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "url": image_path})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with cosmos-reasoning")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
yield "Unsupported file type. Please upload images or videos."
# Create the Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# **cosmos-reason1 by nvidia**")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
file_input = gr.File(label="Upload Image or Video", file_types=["image", "video"], file_count="multiple")
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
submit_btn = gr.Button("Submit")
with gr.Column():
output = gr.Textbox(label="Output", interactive=False)
submit_btn.click(
fn=generate,
inputs=[text_input, file_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)