FLUX-REALISM / app.py
prithivMLmods's picture
Update app.py
bf46246 verified
raw
history blame
7.33 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import uuid
from typing import Tuple
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the base model pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype).to(device)
# Load the Flux Realism LoRA model
lora_repo = "XLabs-AI/flux-RealismLora"
pipe.load_lora_weights(lora_repo)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
style_list = [
{
"name": "8K",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "4K",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "HD",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "BW",
"prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast",
},
{
"name": "Polar",
"prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic",
},
{
"name": "Mustard",
"prompt": "Duotone style Mustard applied to {prompt}",
},
{
"name": "Cinema",
"prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting",
},
{
"name": "Coral",
"prompt": "Duotone style Coral applied to {prompt}",
},
{
"name": "Scrap",
"prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles",
},
{
"name": "Fuchsia",
"prompt": "Duotone style Fuchsia tone applied to {prompt}",
},
{
"name": "Violet",
"prompt": "Duotone style Violet applied to {prompt}",
},
{
"name": "Pastel",
"prompt": "Duotone style Pastel applied to {prompt}",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
},
]
css = """
#col-container {
margin: 0 auto;
max-width: 530px;
}
"""
styles = {k["name"]: k["prompt"] for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> str:
if style_name in styles:
p = styles[style_name]
positive = p.format(prompt=positive)
return positive
def set_wallpaper_size(size):
if size == "Mobile (1080x1920)":
return 1080, 1920
elif size == "Desktop (1920x1080)":
return 1920, 1080
elif size == "Extented (1920x512)":
return 1920, 512
elif size == "Headers (1080x512)":
return 1080, 512
else:
return 1024, 1024 # Default return if none of the conditions are met
@spaces.GPU(duration=60, enable_queue=True)
def infer(prompt, seed=42, randomize_seed=False, wallpaper_size="Desktop(1920x1080)", num_inference_steps=4, style_name=DEFAULT_STYLE_NAME, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
width, height = set_wallpaper_size(wallpaper_size)
styled_prompt = apply_style(style_name, prompt)
options = {
"prompt": styled_prompt,
"width": width,
"height": height,
"guidance_scale": 0.0,
"num_inference_steps": num_inference_steps,
"generator": generator,
}
torch.cuda.empty_cache()
images = pipe(**options).images
grid_img = Image.new('RGB', (width, height))
grid_img.paste(images[0], (0, 0))
unique_name = str(uuid.uuid4()) + ".png"
grid_img.save(unique_name)
return unique_name, seed
examples = [
"chocolate dripping from a donut a yellow background",
"cold coffee in a cup bokeh --ar 85:128 --style",
"an anime illustration of a wiener schnitzel",
"a delicious ceviche cheesecake slice, ultra-hd+",
]
def load_predefined_images1():
predefined_images1 = [
"assets/ww.webp",
"assets/xx.webp",
"assets/yy.webp",
]
return predefined_images1
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 SIM""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Row(visible=True):
wallpaper_size = gr.Radio(
choices=["Mobile (1080x1920)", "Desktop (1920x1080)", "Extented (1920x512)", "Headers (1080x512)", "Default (1024x1024)"],
label="Pixel Size(x*y)",
value="Default (1024x1024)"
)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples=False,
)
gr.on(
triggers=[prompt.submit, run_button.click],
fn=infer,
inputs=[prompt, seed, randomize_seed, wallpaper_size, num_inference_steps, style_selection],
outputs=[result, seed]
)
gr.Markdown("### Image Sample")
predefined_gallery = gr.Gallery(label="## Images Sample", columns=3, show_label=False, value=load_predefined_images1())
gr.Markdown("**Disclaimer/Note:**")
gr.Markdown("🍕Model used in the space <a href='https://huggingface.co/black-forest-labs/FLUX.1-schnell' target='_blank'>black-forest-labs/FLUX.1-schnell</a>. More: 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]")
gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
demo.launch()