File size: 8,840 Bytes
b8a0d2d
0109e78
8716c2f
8081540
9a23baa
f5ecaf8
 
a9be97c
 
8081540
280b089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9be97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0109e78
a9be97c
 
 
 
9dc7658
dec51b2
9a23baa
 
 
 
9dc7658
 
a9be97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280b089
a9be97c
 
 
 
 
 
 
9a23baa
 
 
 
 
86a82e4
9a23baa
9dc7658
a9be97c
9a23baa
9dc7658
9a23baa
 
9dc7658
9a23baa
 
 
 
 
 
 
 
 
9dc7658
9a23baa
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc7658
9a23baa
a9be97c
9dc7658
8716c2f
280b089
8716c2f
f5ecaf8
8716c2f
f5ecaf8
 
a9be97c
86a82e4
 
280b089
 
a9be97c
 
 
 
 
9dc7658
86a82e4
9a23baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a82e4
b8a0d2d
a9be97c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from threading import Thread
import time
from PIL import Image
import torch
import spaces
import cv2
import numpy as np

# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

#adding examples
examples=[
        [{"text": "Explain the Image", "files": ["examples/3.jpg"]}],
        [{"text": "Transcription of the letter", "files": ["examples/222.png"]}],
        [{"text": "@video-infer Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}],
        [{"text": "@video-infer Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}],
        [{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
        [{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
        [{"text": "@video-infer Summarize the events in this video", "files": ["examples/sky.mp4"]}],
        [{"text": "@video-infer What is in the video ?", "files": ["examples/redlight.mp4"]}],
]

# Helper: Downsample video to extract a fixed number of frames.
def downsample_video(video_path, num_frames=10):
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    # Calculate evenly spaced frame indices.
    frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
    frames = []
    for idx in frame_indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
        ret, frame = cap.read()
        if ret:
            # Convert BGR to RGB and then to a PIL image.
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = Image.fromarray(frame)
            frames.append(frame)
    cap.release()
    return frames

# Load processor and model.
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained(
    "HuggingFaceTB/SmolVLM-Instruct", 
    torch_dtype=torch.bfloat16,
).to("cuda")

@spaces.GPU
def model_inference(
    input_dict, history, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
): 
    text = input_dict["text"]
    
    # --- Video Inference Branch ---
    if text.lower().startswith("@video-infer"):
        # Remove the command prefix to get the prompt.
        prompt_text = text[len("@video-infer"):].strip()
        if not input_dict["files"]:
            yield "Error: Please provide a video file for @video-infer."
            return
        # Assume the first file is a video.
        video_file = input_dict["files"][0]
        frames = downsample_video(video_file)
        if not frames:
            yield "Error: Could not extract frames from the video."
            return
        # Build a chat content: include the user prompt and then each frame labeled.
        content = [{"type": "text", "text": prompt_text}]
        for idx, frame in enumerate(frames):
            content.append({"type": "text", "text": f"Frame {idx+1}:"})
            content.append({"type": "image", "image": frame})
        resulting_messages = [{
            "role": "user",
            "content": content
        }]
        prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
        # Process the extracted frames as images.
        inputs = processor(text=prompt, images=[frames], return_tensors="pt")
        inputs = {k: v.to("cuda") for k, v in inputs.items()}
        
        # Setup generation parameters.
        generation_args = {
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": repetition_penalty,
        }
        assert decoding_strategy in ["Greedy", "Top P Sampling"]
        if decoding_strategy == "Greedy":
            generation_args["do_sample"] = False
        elif decoding_strategy == "Top P Sampling":
            generation_args["temperature"] = temperature
            generation_args["do_sample"] = True
            generation_args["top_p"] = top_p
        
        generation_args.update(inputs)
        
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
        buffer = ""
        thread = Thread(target=model.generate, kwargs=generation_args)
        thread.start()
        yield progress_bar_html("Processing Video with SmolVLM")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    # --- Default Image Inference Branch ---
    # Process input images if provided.
    if len(input_dict["files"]) > 1:
        images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
    elif len(input_dict["files"]) == 1:
        images = [Image.open(input_dict["files"][0]).convert("RGB")]
    else:
        images = []
    
    # Validate input.
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")
    if text == "" and images:
        gr.Error("Please input a text query along with the image(s).")
    
    resulting_messages = [{
        "role": "user",
        "content": [{"type": "image"} for _ in range(len(images))] + [
            {"type": "text", "text": text}
        ]
    }]
    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}
    
    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,
    }
    assert decoding_strategy in ["Greedy", "Top P Sampling"]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    generation_args.update(inputs)
    
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    buffer = ""
    thread = Thread(target=model.generate, kwargs=generation_args)
    thread.start()
    yield progress_bar_html("Processing Video with SmolVLM")
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# Gradio ChatInterface: Allow both image and video file types.
demo = gr.ChatInterface(
    fn=model_inference,
    description="# **SmolVLM Video Infer `@video-infer for video understanding`**",
    examples=examples,
    textbox=gr.MultimodalTextbox(
        label="Query Input", 
        file_types=["image", "video"], 
        file_count="multiple"
    ),
    stop_btn="Stop Generation",
    multimodal=True,
    additional_inputs=[
        gr.Radio(
            ["Top P Sampling", "Greedy"],
            value="Greedy",
            label="Decoding strategy",
            info="Higher values is equivalent to sampling more low-probability tokens.",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=5.0,
            value=0.4,
            step=0.1,
            interactive=True,
            label="Sampling temperature",
            info="Higher values will produce more diverse outputs.",
        ),
        gr.Slider(
            minimum=8,
            maximum=1024,
            value=512,
            step=1,
            interactive=True,
            label="Maximum number of new tokens to generate",
        ),
        gr.Slider(
            minimum=0.01,
            maximum=5.0,
            value=1.2,
            step=0.01,
            interactive=True,
            label="Repetition penalty",
            info="1.0 is equivalent to no penalty",
        ),
        gr.Slider(
            minimum=0.01,
            maximum=0.99,
            value=0.8,
            step=0.01,
            interactive=True,
            label="Top P",
            info="Higher values is equivalent to sampling more low-probability tokens.",
        )
    ],
    cache_examples=False
)

demo.launch(debug=True)