Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,840 Bytes
b8a0d2d 0109e78 8716c2f 8081540 9a23baa f5ecaf8 a9be97c 8081540 280b089 a9be97c 0109e78 a9be97c 9dc7658 dec51b2 9a23baa 9dc7658 a9be97c 280b089 a9be97c 9a23baa 86a82e4 9a23baa 9dc7658 a9be97c 9a23baa 9dc7658 9a23baa 9dc7658 9a23baa 9dc7658 9a23baa 9dc7658 9a23baa a9be97c 9dc7658 8716c2f 280b089 8716c2f f5ecaf8 8716c2f f5ecaf8 a9be97c 86a82e4 280b089 a9be97c 9dc7658 86a82e4 9a23baa 86a82e4 b8a0d2d a9be97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from threading import Thread
import time
from PIL import Image
import torch
import spaces
import cv2
import numpy as np
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
#adding examples
examples=[
[{"text": "Explain the Image", "files": ["examples/3.jpg"]}],
[{"text": "Transcription of the letter", "files": ["examples/222.png"]}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}],
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
[{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
[{"text": "@video-infer Summarize the events in this video", "files": ["examples/sky.mp4"]}],
[{"text": "@video-infer What is in the video ?", "files": ["examples/redlight.mp4"]}],
]
# Helper: Downsample video to extract a fixed number of frames.
def downsample_video(video_path, num_frames=10):
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate evenly spaced frame indices.
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
frames = []
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
# Convert BGR to RGB and then to a PIL image.
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
cap.release()
return frames
# Load processor and model.
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-Instruct",
torch_dtype=torch.bfloat16,
).to("cuda")
@spaces.GPU
def model_inference(
input_dict, history, decoding_strategy, temperature, max_new_tokens,
repetition_penalty, top_p
):
text = input_dict["text"]
# --- Video Inference Branch ---
if text.lower().startswith("@video-infer"):
# Remove the command prefix to get the prompt.
prompt_text = text[len("@video-infer"):].strip()
if not input_dict["files"]:
yield "Error: Please provide a video file for @video-infer."
return
# Assume the first file is a video.
video_file = input_dict["files"][0]
frames = downsample_video(video_file)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build a chat content: include the user prompt and then each frame labeled.
content = [{"type": "text", "text": prompt_text}]
for idx, frame in enumerate(frames):
content.append({"type": "text", "text": f"Frame {idx+1}:"})
content.append({"type": "image", "image": frame})
resulting_messages = [{
"role": "user",
"content": content
}]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
# Process the extracted frames as images.
inputs = processor(text=prompt, images=[frames], return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Setup generation parameters.
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
}
assert decoding_strategy in ["Greedy", "Top P Sampling"]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
generation_args.update(inputs)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
buffer = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield progress_bar_html("Processing Video with SmolVLM")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# --- Default Image Inference Branch ---
# Process input images if provided.
if len(input_dict["files"]) > 1:
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
elif len(input_dict["files"]) == 1:
images = [Image.open(input_dict["files"][0]).convert("RGB")]
else:
images = []
# Validate input.
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along with the image(s).")
resulting_messages = [{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [
{"type": "text", "text": text}
]
}]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
}
assert decoding_strategy in ["Greedy", "Top P Sampling"]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
generation_args.update(inputs)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
buffer = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield progress_bar_html("Processing Video with SmolVLM")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# Gradio ChatInterface: Allow both image and video file types.
demo = gr.ChatInterface(
fn=model_inference,
description="# **SmolVLM Video Infer `@video-infer for video understanding`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple"
),
stop_btn="Stop Generation",
multimodal=True,
additional_inputs=[
gr.Radio(
["Top P Sampling", "Greedy"],
value="Greedy",
label="Decoding strategy",
info="Higher values is equivalent to sampling more low-probability tokens.",
),
gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
),
gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
),
gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
),
gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
],
cache_examples=False
)
demo.launch(debug=True) |