File size: 2,257 Bytes
f3b1002
f347918
 
0358302
e354e80
d443926
 
 
 
 
 
f3b1002
0358302
455a710
0358302
f347918
 
 
 
 
 
455a710
0358302
f347918
 
dbd1461
f347918
d443926
f347918
0358302
f347918
 
 
0358302
 
d443926
f347918
0358302
e128767
d443926
 
0358302
 
f347918
d2ca184
e128767
d2ca184
f3b1002
f347918
 
 
e30932f
f347918
e128767
f347918
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from gender_classification import gender_classification
from emotion_classification import emotion_classification
from dog_breed import dog_breed_classification

# Functions to update the model state when a button is clicked.
def select_gender():
    return "gender"

def select_emotion():
    return "emotion"

def select_dog_breed():
    return "dog breed"

# Main classification function that calls the appropriate model based on selection.
def classify(image, model_name):
    if model_name == "gender":
        return gender_classification(image)
    elif model_name == "emotion":
        return emotion_classification(image)
    elif model_name == "dog breed":
        return dog_breed_classification(image)
    else:
        return {"Error": "No model selected"}

with gr.Blocks() as demo:
    # Sidebar with title and model selection buttons.
    with gr.Sidebar():
        gr.Markdown("# SigLIP2 224")
        with gr.Row():
            gender_btn = gr.Button("Gender Classification")
            emotion_btn = gr.Button("Emotion Classification")
            dog_breed_btn = gr.Button("Dog Breed Classification")
        
        # State to hold the current model choice.
        selected_model = gr.State("gender")

        # Set model state when buttons are clicked.
        gender_btn.click(fn=select_gender, inputs=[], outputs=selected_model)
        emotion_btn.click(fn=select_emotion, inputs=[], outputs=selected_model)
        dog_breed_btn.click(fn=select_dog_breed, inputs=[], outputs=selected_model)

        gr.Markdown("### Current Model:")
        model_display = gr.Textbox(value="gender", interactive=False)
        # Update display when state changes.
        selected_model.change(lambda m: m, selected_model, model_display)

    # Main interface: image input, analyze button, and prediction output.
    with gr.Column():
        image_input = gr.Image(type="numpy", label="Upload Image")
        analyze_btn = gr.Button("Classify / Predict")
        output_label = gr.Label(label="Prediction Scores")

        # When the "Analyze" button is clicked, use the selected model to classify the image.
        analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)

demo.launch()