File size: 17,428 Bytes
d48854d
e354e80
 
 
 
 
d48854d
f3b1002
 
e354e80
 
 
 
 
 
 
 
 
 
 
 
f13f796
e354e80
 
 
0c7a97d
f3b1002
e354e80
 
 
f3b1002
e354e80
 
 
 
 
f3b1002
e354e80
 
f3b1002
e354e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd11da
e354e80
ccd11da
e354e80
 
 
 
 
 
 
 
 
 
 
 
8de4827
e354e80
 
8de4827
e354e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b1002
e354e80
 
f3b1002
e354e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e463de
e354e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b1002
e354e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b1002
e354e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b1002
 
e354e80
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

# Updated TTS voices list (all voices)
TTS_VOICES = [
    "af-ZA-AdriNeural",
    "af-ZA-WillemNeural",
    "am-ET-AmehaNeural",
    "am-ET-MekdesNeural",
    "ar-AE-FatimaNeural",
    "ar-AE-HamdanNeural",
    "ar-BH-LailaNeural",
    "ar-BH-MajedNeural",
    "ar-DZ-AminaNeural",
    "ar-DZ-IsmaelNeural",
    "ar-EG-SalmaNeural",
    "ar-EG-OmarNeural",
    "ar-IQ-LanaNeural",
    "ar-IQ-BassamNeural",
    "ar-JO-SanaNeural",
    "ar-JO-TaimNeural",
    "ar-KW-NouraNeural",
    "ar-KW-FahedNeural",
    "ar-LB-LaylaNeural",
    "ar-LB-RamiNeural",
    "ar-LY-ImanNeural",
    "ar-LY-OmarNeural",
    "ar-MA-MounaNeural",
    "ar-MA-JamalNeural",
    "ar-OM-AyshaNeural",
    "ar-OM-AbdullahNeural",
    "ar-QA-AmalNeural",
    "ar-QA-MoazNeural",
    "ar-SA-ZariyahNeural",
    "ar-SA-HamedNeural",
    "ar-SY-AmanyNeural",
    "ar-SY-LaithNeural",
    "ar-TN-ReemNeural",
    "ar-TN-SeifNeural",
    "ar-YE-MaryamNeural",
    "ar-YE-SalehNeural",
    "az-AZ-BabekNeural",
    "az-AZ-BanuNeural",
    "bg-BG-BorislavNeural",
    "bg-BG-KalinaNeural",
    "bn-BD-NabanitaNeural",
    "bn-BD-PradeepNeural",
    "bn-IN-TanishaNeural",
    "bn-IN-SwapanNeural",
    "bs-BA-GoranNeural",
    "bs-BA-VesnaNeural",
    "ca-ES-JoanaNeural",
    "ca-ES-AlbaNeural",
    "ca-ES-EnricNeural",
    "cs-CZ-AntoninNeural",
    "cs-CZ-VlastaNeural",
    "cy-GB-NiaNeural",
    "cy-GB-AledNeural",
    "da-DK-ChristelNeural",
    "da-DK-JeppeNeural",
    "de-AT-IngridNeural",
    "de-AT-JonasNeural",
    "de-CH-LeniNeural",
    "de-CH-JanNeural",
    "de-DE-KatjaNeural",
    "de-DE-ConradNeural",
    "el-GR-AthinaNeural",
    "el-GR-NestorasNeural",
    "en-AU-AnnetteNeural",
    "en-AU-MichaelNeural",
    "en-CA-ClaraNeural",
    "en-CA-LiamNeural",
    "en-GB-SoniaNeural",
    "en-GB-RyanNeural",
    "en-GH-EsiNeural",
    "en-GH-KwameNeural",
    "en-HK-YanNeural",
    "en-HK-TrevorNeural",
    "en-IE-EmilyNeural",
    "en-IE-ConnorNeural",
    "en-IN-NeerjaNeural",
    "en-IN-PrabhasNeural",
    "en-KE-ChantelleNeural",
    "en-KE-ChilembaNeural",
    "en-NG-EzinneNeural",
    "en-NG-AbechiNeural",
    "en-NZ-MollyNeural",
    "en-NZ-MitchellNeural",
    "en-PH-RosaNeural",
    "en-PH-JamesNeural",
    "en-SG-LunaNeural",
    "en-SG-WayneNeural",
    "en-TZ-ImaniNeural",
    "en-TZ-DaudiNeural",
    "en-US-JennyNeural",
    "en-US-GuyNeural",
    "en-ZA-LeahNeural",
    "en-ZA-LukeNeural",
    "es-AR-ElenaNeural",
    "es-AR-TomasNeural",
    "es-BO-SofiaNeural",
    "es-BO-MarceloNeural",
    "es-CL-CatalinaNeural",
    "es-CL-LorenzoNeural",
    "es-CO-SalomeNeural",
    "es-CO-GonzaloNeural",
    "es-CR-MariaNeural",
    "es-CR-JuanNeural",
    "es-CU-BelkysNeural",
    "es-CU-ManuelNeural",
    "es-DO-RamonaNeural",
    "es-DO-EmilioNeural",
    "es-EC-AndreaNeural",
    "es-EC-LuisNeural",
    "es-ES-ElviraNeural",
    "es-ES-AlvaroNeural",
    "es-GQ-TeresaNeural",
    "es-GQ-JavierNeural",
    "es-GT-MartaNeural",
    "es-GT-AndresNeural",
    "es-HN-KarlaNeural",
    "es-HN-CarlosNeural",
    "es-MX-DaliaNeural",
    "es-MX-JorgeNeural",
    "es-NI-YolandaNeural",
    "es-NI-FedericoNeural",
    "es-PA-MargaritaNeural",
    "es-PA-RobertoNeural",
    "es-PE-CamilaNeural",
    "es-PE-AlexNeural",
    "es-PR-KarinaNeural",
    "es-PR-VictorNeural",
    "es-PY-TaniaNeural",
    "es-PY-MarioNeural",
    "es-SV-LorenaNeural",
    "es-SV-RodrigoNeural",
    "es-US-SaraNeural",
    "es-US-AlonsoNeural",
    "es-UY-ValentinaNeural",
    "es-UY-MateoNeural",
    "es-VE-PaolaNeural",
    "es-VE-SebastianNeural",
    "et-EE-AnuNeural",
    "et-EE-KertNeural",
    "eu-ES-AinhoaNeural",
    "eu-ES-AnderNeural",
    "fa-IR-DilaraNeural",
    "fa-IR-FaridNeural",
    "fi-FI-NooraNeural",
    "fi-FI-HarriNeural",
    "fil-PH-BlessicaNeural",
    "fil-PH-AngeloNeural",
    "fr-BE-CharlineNeural",
    "fr-BE-GerardNeural",
    "fr-CA-SylvieNeural",
    "fr-CA-AntoineNeural",
    "fr-CH-ArianeNeural",
    "fr-CH-GuillaumeNeural",
    "fr-FR-DeniseNeural",
    "fr-FR-HenriNeural",
    "ga-IE-OrlaNeural",
    "ga-IE-ColmNeural",
    "gl-ES-SoniaNeural",
    "gl-ES-XiaoqiangNeural",
    "gu-IN-DhwaniNeural",
    "gu-IN-NiranjanNeural",
    "ha-NG-AishaNeural",
    "ha-NG-YusufNeural",
    "he-IL-HilaNeural",
    "he-IL-AvriNeural",
    "hi-IN-SwaraNeural",
    "hi-IN-MadhurNeural",
    "hr-HR-GabrijelaNeural",
    "hr-HR-SreckoNeural",
    "hu-HU-NoemiNeural",
    "hu-HU-TamasNeural",
    "hy-AM-AnushNeural",
    "hy-AM-HaykNeural",
    "id-ID-ArdiNeural",
    "id-ID-GadisNeural",
    "ig-NG-AdaNeural",
    "ig-NG-EzeNeural",
    "is-IS-GudrunNeural",
    "is-IS-GunnarNeural",
    "it-IT-ElsaNeural",
    "it-IT-DiegoNeural",
    "ja-JP-NanamiNeural",
    "ja-JP-KeitaNeural",
    "jv-ID-DianNeural",
    "jv-ID-GustiNeural",
    "ka-GE-EkaNeural",
    # ... (truncated for brevity; include all voices as needed)
]

MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    """
    Filter out any chat entries whose "content" is not a string.
    This helps prevent errors when concatenating previous messages.
    """
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

# Environment variables and parameters for Stable Diffusion XL (left in case needed in the future)
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")  # SDXL Model repository path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # For batched image generation

# Load the SDXL pipeline (not used in the current configuration)
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
    sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
    sd_pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max

def save_image(img: Image.Image) -> str:
    """Save a PIL image with a unique filename and return the path."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a dark red animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    num_images: int = 1,
    progress=gr.Progress(track_tqdm=True),
):
    """(Image generation function is preserved but not called in the current configuration)"""
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        if device.type == "cuda":
            with torch.autocast("cuda", dtype=torch.float16):
                outputs = sd_pipe(**batch_options)
        else:
            outputs = sd_pipe(**batch_options)
        images.extend(outputs.images)
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
    convert_to_speech: bool = False,
    tts_rate: float = 1.0,
    tts_voice: str = "en-US-JennyNeural",
):
    """
    Generates chatbot responses with support for multimodal input and TTS conversion.
    When files (images or videos) are provided, Qwen2VL is used.
    Otherwise, the FastThink-0.5B text model is used.
    After generating the response, if convert_to_speech is True the text is passed to the TTS function.
    """
    text = input_dict["text"].strip()
    files = input_dict.get("files", [])
    
    # Determine which branch to use: multimodal (if files provided) or text-only.
    if files:
        # Process uploaded files as images (or videos)
        if len(files) > 1:
            images = [load_image(image) for image in files]
        else:
            images = [load_image(files[0])]
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing multimodal input...")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
        final_response = buffer
    else:
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()
        outputs = []
        yield progress_bar_html("Processing text...")
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
    
    # Yield the final text response.
    yield final_response

    # If TTS conversion is enabled, log the message and generate speech.
    if convert_to_speech:
        print("Generate Response to Generate Speech")
        # Here tts_rate can be used to adjust parameters if needed.
        output_file = asyncio.run(text_to_speech(final_response, tts_voice))
        yield gr.Audio(output_file, autoplay=True)

with gr.Blocks() as demo:
    with gr.Sidebar():
        gr.Markdown("# TTS Conversion")
        tts_rate_slider = gr.Slider(label="TTS Rate", minimum=0.5, maximum=2.0, step=0.1, value=1.0)
        tts_voice_radio = gr.Radio(choices=TTS_VOICES, label="Choose TTS Voice", value="en-US-JennyNeural")
        convert_to_speech_checkbox = gr.Checkbox(label="Convert to Speech", value=False)
    
    chat_interface = gr.ChatInterface(
        fn=generate,
        additional_inputs=[
            gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
            gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
            gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
            gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
            gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
            # Pass TTS parameters to the generate function.
            convert_to_speech_checkbox,
            tts_rate_slider,
            tts_voice_radio,
        ],
        examples=[
            ["Write the Python Program for Array Rotation"],
            [{"text": "Summarize the letter", "files": ["examples/1.png"]}],
            [{"text": "Describe the Ad", "files": ["examples/coca.mp4"]}],
            [{"text": "Summarize the event in video", "files": ["examples/sky.mp4"]}],
            [{"text": "Describe the video", "files": ["examples/Missing.mp4"]}],
            ["Who is Nikola Tesla, and why did he die?"],
            [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
            ["What causes rainbows to form?"],
        ],
        cache_examples=False,
        type="messages",
        description="# **QwQ Edge: Multimodal (image upload uses Qwen2-VL) with TTS conversion**",
        fill_height=True,
        textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Enter text or upload files"),
        stop_btn="Stop Generation",
        multimodal=True,
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)