Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,428 Bytes
d48854d e354e80 d48854d f3b1002 e354e80 f13f796 e354e80 0c7a97d f3b1002 e354e80 f3b1002 e354e80 f3b1002 e354e80 f3b1002 e354e80 ccd11da e354e80 ccd11da e354e80 8de4827 e354e80 8de4827 e354e80 f3b1002 e354e80 f3b1002 e354e80 3e463de e354e80 f3b1002 e354e80 f3b1002 e354e80 f3b1002 e354e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import cv2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
# Updated TTS voices list (all voices)
TTS_VOICES = [
"af-ZA-AdriNeural",
"af-ZA-WillemNeural",
"am-ET-AmehaNeural",
"am-ET-MekdesNeural",
"ar-AE-FatimaNeural",
"ar-AE-HamdanNeural",
"ar-BH-LailaNeural",
"ar-BH-MajedNeural",
"ar-DZ-AminaNeural",
"ar-DZ-IsmaelNeural",
"ar-EG-SalmaNeural",
"ar-EG-OmarNeural",
"ar-IQ-LanaNeural",
"ar-IQ-BassamNeural",
"ar-JO-SanaNeural",
"ar-JO-TaimNeural",
"ar-KW-NouraNeural",
"ar-KW-FahedNeural",
"ar-LB-LaylaNeural",
"ar-LB-RamiNeural",
"ar-LY-ImanNeural",
"ar-LY-OmarNeural",
"ar-MA-MounaNeural",
"ar-MA-JamalNeural",
"ar-OM-AyshaNeural",
"ar-OM-AbdullahNeural",
"ar-QA-AmalNeural",
"ar-QA-MoazNeural",
"ar-SA-ZariyahNeural",
"ar-SA-HamedNeural",
"ar-SY-AmanyNeural",
"ar-SY-LaithNeural",
"ar-TN-ReemNeural",
"ar-TN-SeifNeural",
"ar-YE-MaryamNeural",
"ar-YE-SalehNeural",
"az-AZ-BabekNeural",
"az-AZ-BanuNeural",
"bg-BG-BorislavNeural",
"bg-BG-KalinaNeural",
"bn-BD-NabanitaNeural",
"bn-BD-PradeepNeural",
"bn-IN-TanishaNeural",
"bn-IN-SwapanNeural",
"bs-BA-GoranNeural",
"bs-BA-VesnaNeural",
"ca-ES-JoanaNeural",
"ca-ES-AlbaNeural",
"ca-ES-EnricNeural",
"cs-CZ-AntoninNeural",
"cs-CZ-VlastaNeural",
"cy-GB-NiaNeural",
"cy-GB-AledNeural",
"da-DK-ChristelNeural",
"da-DK-JeppeNeural",
"de-AT-IngridNeural",
"de-AT-JonasNeural",
"de-CH-LeniNeural",
"de-CH-JanNeural",
"de-DE-KatjaNeural",
"de-DE-ConradNeural",
"el-GR-AthinaNeural",
"el-GR-NestorasNeural",
"en-AU-AnnetteNeural",
"en-AU-MichaelNeural",
"en-CA-ClaraNeural",
"en-CA-LiamNeural",
"en-GB-SoniaNeural",
"en-GB-RyanNeural",
"en-GH-EsiNeural",
"en-GH-KwameNeural",
"en-HK-YanNeural",
"en-HK-TrevorNeural",
"en-IE-EmilyNeural",
"en-IE-ConnorNeural",
"en-IN-NeerjaNeural",
"en-IN-PrabhasNeural",
"en-KE-ChantelleNeural",
"en-KE-ChilembaNeural",
"en-NG-EzinneNeural",
"en-NG-AbechiNeural",
"en-NZ-MollyNeural",
"en-NZ-MitchellNeural",
"en-PH-RosaNeural",
"en-PH-JamesNeural",
"en-SG-LunaNeural",
"en-SG-WayneNeural",
"en-TZ-ImaniNeural",
"en-TZ-DaudiNeural",
"en-US-JennyNeural",
"en-US-GuyNeural",
"en-ZA-LeahNeural",
"en-ZA-LukeNeural",
"es-AR-ElenaNeural",
"es-AR-TomasNeural",
"es-BO-SofiaNeural",
"es-BO-MarceloNeural",
"es-CL-CatalinaNeural",
"es-CL-LorenzoNeural",
"es-CO-SalomeNeural",
"es-CO-GonzaloNeural",
"es-CR-MariaNeural",
"es-CR-JuanNeural",
"es-CU-BelkysNeural",
"es-CU-ManuelNeural",
"es-DO-RamonaNeural",
"es-DO-EmilioNeural",
"es-EC-AndreaNeural",
"es-EC-LuisNeural",
"es-ES-ElviraNeural",
"es-ES-AlvaroNeural",
"es-GQ-TeresaNeural",
"es-GQ-JavierNeural",
"es-GT-MartaNeural",
"es-GT-AndresNeural",
"es-HN-KarlaNeural",
"es-HN-CarlosNeural",
"es-MX-DaliaNeural",
"es-MX-JorgeNeural",
"es-NI-YolandaNeural",
"es-NI-FedericoNeural",
"es-PA-MargaritaNeural",
"es-PA-RobertoNeural",
"es-PE-CamilaNeural",
"es-PE-AlexNeural",
"es-PR-KarinaNeural",
"es-PR-VictorNeural",
"es-PY-TaniaNeural",
"es-PY-MarioNeural",
"es-SV-LorenaNeural",
"es-SV-RodrigoNeural",
"es-US-SaraNeural",
"es-US-AlonsoNeural",
"es-UY-ValentinaNeural",
"es-UY-MateoNeural",
"es-VE-PaolaNeural",
"es-VE-SebastianNeural",
"et-EE-AnuNeural",
"et-EE-KertNeural",
"eu-ES-AinhoaNeural",
"eu-ES-AnderNeural",
"fa-IR-DilaraNeural",
"fa-IR-FaridNeural",
"fi-FI-NooraNeural",
"fi-FI-HarriNeural",
"fil-PH-BlessicaNeural",
"fil-PH-AngeloNeural",
"fr-BE-CharlineNeural",
"fr-BE-GerardNeural",
"fr-CA-SylvieNeural",
"fr-CA-AntoineNeural",
"fr-CH-ArianeNeural",
"fr-CH-GuillaumeNeural",
"fr-FR-DeniseNeural",
"fr-FR-HenriNeural",
"ga-IE-OrlaNeural",
"ga-IE-ColmNeural",
"gl-ES-SoniaNeural",
"gl-ES-XiaoqiangNeural",
"gu-IN-DhwaniNeural",
"gu-IN-NiranjanNeural",
"ha-NG-AishaNeural",
"ha-NG-YusufNeural",
"he-IL-HilaNeural",
"he-IL-AvriNeural",
"hi-IN-SwaraNeural",
"hi-IN-MadhurNeural",
"hr-HR-GabrijelaNeural",
"hr-HR-SreckoNeural",
"hu-HU-NoemiNeural",
"hu-HU-TamasNeural",
"hy-AM-AnushNeural",
"hy-AM-HaykNeural",
"id-ID-ArdiNeural",
"id-ID-GadisNeural",
"ig-NG-AdaNeural",
"ig-NG-EzeNeural",
"is-IS-GudrunNeural",
"is-IS-GunnarNeural",
"it-IT-ElsaNeural",
"it-IT-DiegoNeural",
"ja-JP-NanamiNeural",
"ja-JP-KeitaNeural",
"jv-ID-DianNeural",
"jv-ID-GustiNeural",
"ka-GE-EkaNeural",
# ... (truncated for brevity; include all voices as needed)
]
MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
"""
Filter out any chat entries whose "content" is not a string.
This helps prevent errors when concatenating previous messages.
"""
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
# Environment variables and parameters for Stable Diffusion XL (left in case needed in the future)
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
# Load the SDXL pipeline (not used in the current configuration)
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
sd_pipe.enable_model_cpu_offload()
MAX_SEED = np.iinfo(np.int32).max
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return the path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark red animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
"""(Image generation function is preserved but not called in the current configuration)"""
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
if device.type == "cuda":
with torch.autocast("cuda", dtype=torch.float16):
outputs = sd_pipe(**batch_options)
else:
outputs = sd_pipe(**batch_options)
images.extend(outputs.images)
image_paths = [save_image(img) for img in images]
return image_paths, seed
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
convert_to_speech: bool = False,
tts_rate: float = 1.0,
tts_voice: str = "en-US-JennyNeural",
):
"""
Generates chatbot responses with support for multimodal input and TTS conversion.
When files (images or videos) are provided, Qwen2VL is used.
Otherwise, the FastThink-0.5B text model is used.
After generating the response, if convert_to_speech is True the text is passed to the TTS function.
"""
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# Determine which branch to use: multimodal (if files provided) or text-only.
if files:
# Process uploaded files as images (or videos)
if len(files) > 1:
images = [load_image(image) for image in files]
else:
images = [load_image(files[0])]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing multimodal input...")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
final_response = buffer
else:
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
yield progress_bar_html("Processing text...")
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
# Yield the final text response.
yield final_response
# If TTS conversion is enabled, log the message and generate speech.
if convert_to_speech:
print("Generate Response to Generate Speech")
# Here tts_rate can be used to adjust parameters if needed.
output_file = asyncio.run(text_to_speech(final_response, tts_voice))
yield gr.Audio(output_file, autoplay=True)
with gr.Blocks() as demo:
with gr.Sidebar():
gr.Markdown("# TTS Conversion")
tts_rate_slider = gr.Slider(label="TTS Rate", minimum=0.5, maximum=2.0, step=0.1, value=1.0)
tts_voice_radio = gr.Radio(choices=TTS_VOICES, label="Choose TTS Voice", value="en-US-JennyNeural")
convert_to_speech_checkbox = gr.Checkbox(label="Convert to Speech", value=False)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
# Pass TTS parameters to the generate function.
convert_to_speech_checkbox,
tts_rate_slider,
tts_voice_radio,
],
examples=[
["Write the Python Program for Array Rotation"],
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
[{"text": "Describe the Ad", "files": ["examples/coca.mp4"]}],
[{"text": "Summarize the event in video", "files": ["examples/sky.mp4"]}],
[{"text": "Describe the video", "files": ["examples/Missing.mp4"]}],
["Who is Nikola Tesla, and why did he die?"],
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
["What causes rainbows to form?"],
],
cache_examples=False,
type="messages",
description="# **QwQ Edge: Multimodal (image upload uses Qwen2-VL) with TTS conversion**",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Enter text or upload files"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |