Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import edge_tts | |
import cv2 | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
) | |
from transformers.image_utils import load_image | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load text-only model and tokenizer | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
# Updated TTS voices list (all voices) | |
TTS_VOICES = [ | |
"af-ZA-AdriNeural", | |
"af-ZA-WillemNeural", | |
"am-ET-AmehaNeural", | |
"am-ET-MekdesNeural", | |
"ar-AE-FatimaNeural", | |
"ar-AE-HamdanNeural", | |
"ar-BH-LailaNeural", | |
"ar-BH-MajedNeural", | |
"ar-DZ-AminaNeural", | |
"ar-DZ-IsmaelNeural", | |
"ar-EG-SalmaNeural", | |
"ar-EG-OmarNeural", | |
"ar-IQ-LanaNeural", | |
"ar-IQ-BassamNeural", | |
"ar-JO-SanaNeural", | |
"ar-JO-TaimNeural", | |
"ar-KW-NouraNeural", | |
"ar-KW-FahedNeural", | |
"ar-LB-LaylaNeural", | |
"ar-LB-RamiNeural", | |
"ar-LY-ImanNeural", | |
"ar-LY-OmarNeural", | |
"ar-MA-MounaNeural", | |
"ar-MA-JamalNeural", | |
"ar-OM-AyshaNeural", | |
"ar-OM-AbdullahNeural", | |
"ar-QA-AmalNeural", | |
"ar-QA-MoazNeural", | |
"ar-SA-ZariyahNeural", | |
"ar-SA-HamedNeural", | |
"ar-SY-AmanyNeural", | |
"ar-SY-LaithNeural", | |
"ar-TN-ReemNeural", | |
"ar-TN-SeifNeural", | |
"ar-YE-MaryamNeural", | |
"ar-YE-SalehNeural", | |
"az-AZ-BabekNeural", | |
"az-AZ-BanuNeural", | |
"bg-BG-BorislavNeural", | |
"bg-BG-KalinaNeural", | |
"bn-BD-NabanitaNeural", | |
"bn-BD-PradeepNeural", | |
"bn-IN-TanishaNeural", | |
"bn-IN-SwapanNeural", | |
"bs-BA-GoranNeural", | |
"bs-BA-VesnaNeural", | |
"ca-ES-JoanaNeural", | |
"ca-ES-AlbaNeural", | |
"ca-ES-EnricNeural", | |
"cs-CZ-AntoninNeural", | |
"cs-CZ-VlastaNeural", | |
"cy-GB-NiaNeural", | |
"cy-GB-AledNeural", | |
"da-DK-ChristelNeural", | |
"da-DK-JeppeNeural", | |
"de-AT-IngridNeural", | |
"de-AT-JonasNeural", | |
"de-CH-LeniNeural", | |
"de-CH-JanNeural", | |
"de-DE-KatjaNeural", | |
"de-DE-ConradNeural", | |
"el-GR-AthinaNeural", | |
"el-GR-NestorasNeural", | |
"en-AU-AnnetteNeural", | |
"en-AU-MichaelNeural", | |
"en-CA-ClaraNeural", | |
"en-CA-LiamNeural", | |
"en-GB-SoniaNeural", | |
"en-GB-RyanNeural", | |
"en-GH-EsiNeural", | |
"en-GH-KwameNeural", | |
"en-HK-YanNeural", | |
"en-HK-TrevorNeural", | |
"en-IE-EmilyNeural", | |
"en-IE-ConnorNeural", | |
"en-IN-NeerjaNeural", | |
"en-IN-PrabhasNeural", | |
"en-KE-ChantelleNeural", | |
"en-KE-ChilembaNeural", | |
"en-NG-EzinneNeural", | |
"en-NG-AbechiNeural", | |
"en-NZ-MollyNeural", | |
"en-NZ-MitchellNeural", | |
"en-PH-RosaNeural", | |
"en-PH-JamesNeural", | |
"en-SG-LunaNeural", | |
"en-SG-WayneNeural", | |
"en-TZ-ImaniNeural", | |
"en-TZ-DaudiNeural", | |
"en-US-JennyNeural", | |
"en-US-GuyNeural", | |
"en-ZA-LeahNeural", | |
"en-ZA-LukeNeural", | |
"es-AR-ElenaNeural", | |
"es-AR-TomasNeural", | |
"es-BO-SofiaNeural", | |
"es-BO-MarceloNeural", | |
"es-CL-CatalinaNeural", | |
"es-CL-LorenzoNeural", | |
"es-CO-SalomeNeural", | |
"es-CO-GonzaloNeural", | |
"es-CR-MariaNeural", | |
"es-CR-JuanNeural", | |
"es-CU-BelkysNeural", | |
"es-CU-ManuelNeural", | |
"es-DO-RamonaNeural", | |
"es-DO-EmilioNeural", | |
"es-EC-AndreaNeural", | |
"es-EC-LuisNeural", | |
"es-ES-ElviraNeural", | |
"es-ES-AlvaroNeural", | |
"es-GQ-TeresaNeural", | |
"es-GQ-JavierNeural", | |
"es-GT-MartaNeural", | |
"es-GT-AndresNeural", | |
"es-HN-KarlaNeural", | |
"es-HN-CarlosNeural", | |
"es-MX-DaliaNeural", | |
"es-MX-JorgeNeural", | |
"es-NI-YolandaNeural", | |
"es-NI-FedericoNeural", | |
"es-PA-MargaritaNeural", | |
"es-PA-RobertoNeural", | |
"es-PE-CamilaNeural", | |
"es-PE-AlexNeural", | |
"es-PR-KarinaNeural", | |
"es-PR-VictorNeural", | |
"es-PY-TaniaNeural", | |
"es-PY-MarioNeural", | |
"es-SV-LorenaNeural", | |
"es-SV-RodrigoNeural", | |
"es-US-SaraNeural", | |
"es-US-AlonsoNeural", | |
"es-UY-ValentinaNeural", | |
"es-UY-MateoNeural", | |
"es-VE-PaolaNeural", | |
"es-VE-SebastianNeural", | |
"et-EE-AnuNeural", | |
"et-EE-KertNeural", | |
"eu-ES-AinhoaNeural", | |
"eu-ES-AnderNeural", | |
"fa-IR-DilaraNeural", | |
"fa-IR-FaridNeural", | |
"fi-FI-NooraNeural", | |
"fi-FI-HarriNeural", | |
"fil-PH-BlessicaNeural", | |
"fil-PH-AngeloNeural", | |
"fr-BE-CharlineNeural", | |
"fr-BE-GerardNeural", | |
"fr-CA-SylvieNeural", | |
"fr-CA-AntoineNeural", | |
"fr-CH-ArianeNeural", | |
"fr-CH-GuillaumeNeural", | |
"fr-FR-DeniseNeural", | |
"fr-FR-HenriNeural", | |
"ga-IE-OrlaNeural", | |
"ga-IE-ColmNeural", | |
"gl-ES-SoniaNeural", | |
"gl-ES-XiaoqiangNeural", | |
"gu-IN-DhwaniNeural", | |
"gu-IN-NiranjanNeural", | |
"ha-NG-AishaNeural", | |
"ha-NG-YusufNeural", | |
"he-IL-HilaNeural", | |
"he-IL-AvriNeural", | |
"hi-IN-SwaraNeural", | |
"hi-IN-MadhurNeural", | |
"hr-HR-GabrijelaNeural", | |
"hr-HR-SreckoNeural", | |
"hu-HU-NoemiNeural", | |
"hu-HU-TamasNeural", | |
"hy-AM-AnushNeural", | |
"hy-AM-HaykNeural", | |
"id-ID-ArdiNeural", | |
"id-ID-GadisNeural", | |
"ig-NG-AdaNeural", | |
"ig-NG-EzeNeural", | |
"is-IS-GudrunNeural", | |
"is-IS-GunnarNeural", | |
"it-IT-ElsaNeural", | |
"it-IT-DiegoNeural", | |
"ja-JP-NanamiNeural", | |
"ja-JP-KeitaNeural", | |
"jv-ID-DianNeural", | |
"jv-ID-GustiNeural", | |
"ka-GE-EkaNeural", | |
# ... (truncated for brevity; include all voices as needed) | |
] | |
MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
"""Convert text to speech using Edge TTS and save as MP3""" | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def clean_chat_history(chat_history): | |
""" | |
Filter out any chat entries whose "content" is not a string. | |
This helps prevent errors when concatenating previous messages. | |
""" | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
# Environment variables and parameters for Stable Diffusion XL (left in case needed in the future) | |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation | |
# Load the SDXL pipeline (not used in the current configuration) | |
sd_pipe = StableDiffusionXLPipeline.from_pretrained( | |
MODEL_ID_SD, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
use_safetensors=True, | |
add_watermarker=False, | |
).to(device) | |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
if torch.cuda.is_available(): | |
sd_pipe.text_encoder = sd_pipe.text_encoder.half() | |
if USE_TORCH_COMPILE: | |
sd_pipe.compile() | |
if ENABLE_CPU_OFFLOAD: | |
sd_pipe.enable_model_cpu_offload() | |
MAX_SEED = np.iinfo(np.int32).max | |
def save_image(img: Image.Image) -> str: | |
"""Save a PIL image with a unique filename and return the path.""" | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def progress_bar_html(label: str) -> str: | |
""" | |
Returns an HTML snippet for a thin progress bar with a label. | |
The progress bar is styled as a dark red animated bar. | |
""" | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to 10 evenly spaced frames. | |
Each frame is returned as a PIL image along with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def generate_image_fn( | |
prompt: str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
seed: int = 1, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
num_inference_steps: int = 25, | |
randomize_seed: bool = False, | |
use_resolution_binning: bool = True, | |
num_images: int = 1, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
"""(Image generation function is preserved but not called in the current configuration)""" | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
options = { | |
"prompt": [prompt] * num_images, | |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, | |
"width": width, | |
"height": height, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": num_inference_steps, | |
"generator": generator, | |
"output_type": "pil", | |
} | |
if use_resolution_binning: | |
options["use_resolution_binning"] = True | |
images = [] | |
for i in range(0, num_images, BATCH_SIZE): | |
batch_options = options.copy() | |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] | |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None: | |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] | |
if device.type == "cuda": | |
with torch.autocast("cuda", dtype=torch.float16): | |
outputs = sd_pipe(**batch_options) | |
else: | |
outputs = sd_pipe(**batch_options) | |
images.extend(outputs.images) | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
convert_to_speech: bool = False, | |
tts_rate: float = 1.0, | |
tts_voice: str = "en-US-JennyNeural", | |
): | |
""" | |
Generates chatbot responses with support for multimodal input and TTS conversion. | |
When files (images or videos) are provided, Qwen2VL is used. | |
Otherwise, the FastThink-0.5B text model is used. | |
After generating the response, if convert_to_speech is True the text is passed to the TTS function. | |
""" | |
text = input_dict["text"].strip() | |
files = input_dict.get("files", []) | |
# Determine which branch to use: multimodal (if files provided) or text-only. | |
if files: | |
# Process uploaded files as images (or videos) | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
else: | |
images = [load_image(files[0])] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing multimodal input...") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
final_response = buffer | |
else: | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
yield progress_bar_html("Processing text...") | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
# Yield the final text response. | |
yield final_response | |
# If TTS conversion is enabled, log the message and generate speech. | |
if convert_to_speech: | |
print("Generate Response to Generate Speech") | |
# Here tts_rate can be used to adjust parameters if needed. | |
output_file = asyncio.run(text_to_speech(final_response, tts_voice)) | |
yield gr.Audio(output_file, autoplay=True) | |
with gr.Blocks() as demo: | |
with gr.Sidebar(): | |
gr.Markdown("# TTS Conversion") | |
tts_rate_slider = gr.Slider(label="TTS Rate", minimum=0.5, maximum=2.0, step=0.1, value=1.0) | |
tts_voice_radio = gr.Radio(choices=TTS_VOICES, label="Choose TTS Voice", value="en-US-JennyNeural") | |
convert_to_speech_checkbox = gr.Checkbox(label="Convert to Speech", value=False) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
# Pass TTS parameters to the generate function. | |
convert_to_speech_checkbox, | |
tts_rate_slider, | |
tts_voice_radio, | |
], | |
examples=[ | |
["Write the Python Program for Array Rotation"], | |
[{"text": "Summarize the letter", "files": ["examples/1.png"]}], | |
[{"text": "Describe the Ad", "files": ["examples/coca.mp4"]}], | |
[{"text": "Summarize the event in video", "files": ["examples/sky.mp4"]}], | |
[{"text": "Describe the video", "files": ["examples/Missing.mp4"]}], | |
["Who is Nikola Tesla, and why did he die?"], | |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], | |
["What causes rainbows to form?"], | |
], | |
cache_examples=False, | |
type="messages", | |
description="# **QwQ Edge: Multimodal (image upload uses Qwen2-VL) with TTS conversion**", | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Enter text or upload files"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |