File size: 3,386 Bytes
ed275c9
 
5d63d59
ed275c9
5d63d59
 
 
ed275c9
9522057
 
91cda81
9522057
91cda81
 
 
ed275c9
 
9522057
5d63d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed275c9
 
 
 
5d63d59
 
ed275c9
 
 
 
5d63d59
 
ed275c9
5d63d59
 
ed275c9
5d63d59
ed275c9
 
5d63d59
 
ed275c9
 
5d63d59
ed275c9
 
 
5d63d59
ed275c9
5d63d59
ed275c9
 
5d63d59
ed275c9
 
 
5d63d59
 
615c76a
5d63d59
615c76a
8b9fc4b
5d63d59
 
 
 
 
 
 
9522057
91cda81
 
9522057
 
91cda81
 
 
 
 
 
 
6f09ee6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces

MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict["files"]

    # Load images if provided
    if len(files) > 1:
        images = [load_image(image) for image in files]
    elif len(files) == 1:
        images = [load_image(files[0])]
    else:
        images = []

    # Validate input
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")
        return
    if text == "" and images:
        gr.Error("Please input a text query along with the image(s).")
        return

    # Prepare messages for the model
    messages = [
        {
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ],
        }
    ]

    # Apply chat template and process inputs
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt],
        images=images if images else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")

    # Set up streamer for real-time output
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)

    # Start generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream the output
    buffer = ""
    yield "Thinking..."
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer


# Example inputs
examples = [
    [{"text": "summarize the letter", "files": ["examples/1.png"]}],
    [{"text": "Describe the document?", "files": ["example_images/document.jpg"]}],
    [{"text": "Describe the photo", "files": ["examples/3.png"]}],
    [{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}],
    [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
    [{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
    [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
    [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],

]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **Multimodal OCR**",
    examples=examples,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

demo.launch(debug=True)