File size: 4,152 Bytes
ed275c9
 
5d63d59
ed275c9
5d63d59
 
 
ed275c9
5abbaf4
 
9522057
91cda81
9522057
91cda81
 
 
ed275c9
 
9522057
5d63d59
 
 
 
 
5633a75
 
5d63d59
5633a75
 
 
 
 
 
5d63d59
 
5633a75
5d63d59
 
5633a75
 
5d63d59
5633a75
 
5d63d59
 
 
ed275c9
 
 
 
5d63d59
5633a75
5d63d59
ed275c9
 
 
 
5d63d59
 
ed275c9
5d63d59
fe53594
 
5633a75
fe53594
ed275c9
 
5d63d59
 
ed275c9
 
5d63d59
ed275c9
 
 
5d63d59
ed275c9
5d63d59
ed275c9
 
0de5083
 
5d63d59
ed275c9
 
5d63d59
 
3cae58c
615c76a
 
7fef2b6
8b9fc4b
5d63d59
 
 
 
 
fe53594
9522057
91cda81
 
9522057
 
91cda81
5633a75
91cda81
 
 
 
 
fe53594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces

# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict["files"]

    # Load images if provided
    if len(files) > 1:
        images = [load_image(image) for image in files if image.endswith(('png', 'jpg', 'jpeg'))]
        videos = [video for video in files if video.endswith(('mp4', 'avi', 'mov'))]
    elif len(files) == 1:
        if files[0].endswith(('png', 'jpg', 'jpeg')):
            images = [load_image(files[0])]
            videos = []
        else:
            images = []
            videos = [files[0]]
    else:
        images = []
        videos = []

    # Validate input
    if text == "" and not images and not videos:
        gr.Error("Please input a query and optionally image(s) or video(s).")
        return
    if text == "" and (images or videos):
        gr.Error("Please input a text query along with the image(s) or video(s).")
        return

    # Prepare messages for the model
    messages = [
        {
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                *[{"type": "video", "video": video} for video in videos],
                {"type": "text", "text": text},
            ],
        }
    ]

    # Apply chat template and process inputs
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt],
        images=images if images else None,
        videos=videos if videos else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")

    # Set up streamer for real-time output
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)

    # Start generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream the output
    buffer = ""
    yield "Thinking..."
    for new_text in streamer:
        buffer += new_text
        # Remove <|im_end|> or similar tokens from the output
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

# Example inputs
examples = [
    [{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
    [{"text": "summarize the letter", "files": ["examples/1.png"]}],
    [{"text": "Describe the photo", "files": ["examples/3.png"]}],
    [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
    [{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}],
    [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
    [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
    [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
    [{"text": "Describe the video.", "files": ["example_videos/sample.mp4"]}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **Multimodal OCR**",
    examples=examples,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

demo.launch(debug=True, share=True)