Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import ( | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
AutoModelForImageTextToText, | |
Gemma3ForConditionalGeneration # new Gemma3 model import | |
) | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import time | |
import torch | |
import spaces | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
# Helper function to return a progress bar HTML snippet. | |
def progress_bar_html(label: str) -> str: | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #FF69B4 ; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
### Load Models & Processors ### | |
# Qwen2VL OCR model (default) | |
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or alternate version | |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) | |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
QV_MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# Aya-Vision model (trigger with @aya-vision) | |
AYA_MODEL_ID = "CohereForAI/aya-vision-8b" | |
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID) | |
aya_model = AutoModelForImageTextToText.from_pretrained( | |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16 | |
) | |
# Gemma3-4b model (trigger with @gemma3-4b) | |
GEMMA3_MODEL_ID = "google/gemma-3-4b-it" | |
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained( | |
GEMMA3_MODEL_ID, device_map="auto" | |
).eval() | |
gemma3_processor = AutoProcessor.from_pretrained(GEMMA3_MODEL_ID) | |
def model_inference(input_dict, history): | |
text = input_dict["text"].strip() | |
files = input_dict.get("files", []) | |
# Branch: Aya-Vision (trigger with @aya-vision) | |
if text.lower().startswith("@aya-vision"): | |
text_prompt = text[len("@aya-vision"):].strip() | |
if not files: | |
yield "Error: Please provide an image for the @aya-vision feature." | |
return | |
image = load_image(files[0]) | |
yield progress_bar_html("Processing with Aya-Vision-8b") | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text_prompt}, | |
], | |
}] | |
inputs = aya_processor.apply_chat_template( | |
messages, | |
padding=True, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt" | |
).to(aya_model.device) | |
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
temperature=0.3 | |
) | |
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Branch: Gemma3-4b (trigger with @gemma3-4b) | |
if text.lower().startswith("@gemma3-4b"): | |
text_prompt = text[len("@gemma3-4b"):].strip() | |
if not files: | |
yield "Error: Please provide an image for the @gemma3-4b feature." | |
return | |
image = load_image(files[0]) | |
yield progress_bar_html("Processing with Gemma3-4b") | |
messages = [ | |
{ | |
"role": "system", | |
"content": [{"type": "text", "text": "You are a helpful assistant."}] | |
}, | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text_prompt} | |
] | |
} | |
] | |
inputs = gemma3_processor.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, | |
return_dict=True, return_tensors="pt" | |
).to(gemma3_model.device, dtype=torch.bfloat16) | |
input_len = inputs["input_ids"].shape[-1] | |
streamer = TextIteratorStreamer(gemma3_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512, do_sample=False) | |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Default Branch: Qwen2-VL OCR (for text query with optional images) | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
if text == "" and not images: | |
yield "Error: Please input a query and optionally image(s)." | |
return | |
if text == "" and images: | |
yield "Error: Please input a text query along with the image(s)." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
], | |
}] | |
prompt = qwen_processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
inputs = qwen_processor( | |
text=[prompt], | |
images=images if images else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2VL OCR") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
# Examples for quick testing. | |
examples = [ | |
[{"text": "@gemma3-4b Summarize the letter", "files": ["examples/1.png"]}], | |
[{"text": "@gemma3-4b Extract JSON from the image", "files": ["example_images/document.jpg"]}], | |
[{"text": "@gemma3-4b Describe the photo", "files": ["examples/3.png"]}], | |
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}], | |
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
] | |
# Gradio ChatInterface with a multimodal textbox. | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
description=( | |
"# **Multimodal OCR & Vision Features**\n\n" | |
"Use the following commands to select a model:\n" | |
"- `@aya-vision` for Aya-Vision-8b\n" | |
"- `@gemma3-4b` for Gemma3-4b\n\n" | |
"Default processing is done with Qwen2VL OCR." | |
), | |
examples=examples, | |
textbox=gr.MultimodalTextbox( | |
label="Query Input", | |
file_types=["image"], | |
file_count="multiple", | |
placeholder="Enter your text query and attach images if needed. Use @aya-vision or @gemma3-4b to choose a feature." | |
), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
) | |
demo.launch(debug=True) |