Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,332 Bytes
ed275c9 3f6a788 a520e3c 3f6a788 5d63d59 ed275c9 5d63d59 fc95e60 3f6a788 ed275c9 7342b9f 36ebfe1 7342b9f c8cd2f3 7342b9f a520e3c 3f6a788 91cda81 ed275c9 a520e3c 3f6a788 a520e3c ed275c9 9522057 3f6a788 a520e3c 3f6a788 a520e3c 239e8eb a520e3c 239e8eb a520e3c fc95e60 3f6a788 fc95e60 3f6a788 5d63d59 fc95e60 3f6a788 5d63d59 3f6a788 5d63d59 fc95e60 5633a75 fe53594 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 7342b9f ed275c9 0de5083 5d63d59 ed275c9 a520e3c 5d63d59 a520e3c df7c39c a520e3c 78742f4 b50fe8f 8b3f5c3 9522057 91cda81 a520e3c 91cda81 9522057 a520e3c 91cda81 7342b9f a520e3c 7342b9f 91cda81 fc95e60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
AutoModelForImageTextToText,
Gemma3ForConditionalGeneration # new Gemma3 model import
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
from PIL import Image
import requests
from io import BytesIO
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4 ; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
### Load Models & Processors ###
# Qwen2VL OCR model (default)
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or alternate version
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# Aya-Vision model (trigger with @aya-vision)
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
aya_model = AutoModelForImageTextToText.from_pretrained(
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
)
# Gemma3-4b model (trigger with @gemma3-4b)
GEMMA3_MODEL_ID = "google/gemma-3-4b-it"
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
GEMMA3_MODEL_ID, device_map="auto"
).eval()
gemma3_processor = AutoProcessor.from_pretrained(GEMMA3_MODEL_ID)
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# Branch: Aya-Vision (trigger with @aya-vision)
if text.lower().startswith("@aya-vision"):
text_prompt = text[len("@aya-vision"):].strip()
if not files:
yield "Error: Please provide an image for the @aya-vision feature."
return
image = load_image(files[0])
yield progress_bar_html("Processing with Aya-Vision-8b")
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_prompt},
],
}]
inputs = aya_processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(aya_model.device)
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
temperature=0.3
)
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Branch: Gemma3-4b (trigger with @gemma3-4b)
if text.lower().startswith("@gemma3-4b"):
text_prompt = text[len("@gemma3-4b"):].strip()
if not files:
yield "Error: Please provide an image for the @gemma3-4b feature."
return
image = load_image(files[0])
yield progress_bar_html("Processing with Gemma3-4b")
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant."}]
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_prompt}
]
}
]
inputs = gemma3_processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
streamer = TextIteratorStreamer(gemma3_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512, do_sample=False)
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Default Branch: Qwen2-VL OCR (for text query with optional images)
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
yield "Error: Please input a query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt = qwen_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = qwen_processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Examples for quick testing.
examples = [
[{"text": "@gemma3-4b Summarize the letter", "files": ["examples/1.png"]}],
[{"text": "@gemma3-4b Extract JSON from the image", "files": ["example_images/document.jpg"]}],
[{"text": "@gemma3-4b Describe the photo", "files": ["examples/3.png"]}],
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
]
# Gradio ChatInterface with a multimodal textbox.
demo = gr.ChatInterface(
fn=model_inference,
description=(
"# **Multimodal OCR & Vision Features**\n\n"
"Use the following commands to select a model:\n"
"- `@aya-vision` for Aya-Vision-8b\n"
"- `@gemma3-4b` for Gemma3-4b\n\n"
"Default processing is done with Qwen2VL OCR."
),
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image"],
file_count="multiple",
placeholder="Enter your text query and attach images if needed. Use @aya-vision or @gemma3-4b to choose a feature."
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True) |