File size: 22,000 Bytes
71b21b4
 
 
 
 
 
 
 
 
 
 
 
 
 
54875b8
71b21b4
 
 
 
 
 
 
 
 
 
 
54875b8
71b21b4
 
 
54875b8
71b21b4
 
 
54875b8
71b21b4
 
 
 
 
 
 
 
 
54875b8
71b21b4
 
 
 
 
54875b8
 
 
71b21b4
54875b8
71b21b4
 
 
 
54875b8
 
 
 
 
71b21b4
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
54875b8
 
 
 
 
 
 
 
71b21b4
54875b8
 
 
71b21b4
 
54875b8
71b21b4
 
 
 
 
54875b8
71b21b4
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
54875b8
 
 
 
71b21b4
 
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
 
 
 
 
 
 
 
 
 
 
 
 
54875b8
71b21b4
54875b8
 
71b21b4
 
54875b8
71b21b4
54875b8
 
71b21b4
 
 
 
 
54875b8
71b21b4
54875b8
71b21b4
 
 
 
 
 
54875b8
71b21b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54875b8
71b21b4
 
 
 
 
 
54875b8
 
71b21b4
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
 
54875b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

# --------- Global Config and Model Loading ---------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# For text-only generation (chat)
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

# For TTS
TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
]

# For multimodal Qwen2VL (OCR / video/text)
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_QWEN,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

# For SDXL Image Generation
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")  # Set your SDXL model repository path via env variable
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
    sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
    sd_pipe.enable_model_cpu_offload()

# For SDXL quality styles and LoRA options (used in the image-gen tab)
LORA_OPTIONS = {
    "Realism (face/character)πŸ‘¦πŸ»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
    "Pixar (art/toons)πŸ™€": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
    "Photoshoot (camera/film)πŸ“Έ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
    "Clothing (hoodies/pant/shirts)πŸ‘”": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
    "Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
    "Fashion Product (wearing/usable)πŸ‘œ": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
    "Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
    "Modern Clothing (trend/new)πŸ‘•": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
    "Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
    "Liquid Wallpaper (minimal/illustration)πŸ–ΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
    "Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
    "Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
    "Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

# --------- Utility Functions ---------
def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    async def run_tts():
        communicate = edge_tts.Communicate(text, voice)
        await communicate.save(output_file)
        return output_file
    return asyncio.run(run_tts())

def clean_chat_history(chat_history):
    """Remove non-string content from the chat history."""
    return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)]

def save_image(img: Image.Image) -> str:
    """Save a PIL image to a file with a unique filename."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    return random.randint(0, MAX_SEED) if randomize_seed else seed

def progress_bar_html(label: str) -> str:
    """Return an HTML snippet for a progress bar."""
    return f'''
    <div style="display: flex; align-items: center;">
        <span style="margin-right: 10px; font-size: 14px;">{label}</span>
        <div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
            <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
        </div>
    </div>
    <style>
    @keyframes loading {{
        0% {{ transform: translateX(-100%); }}
        100% {{ transform: translateX(100%); }}
    }}
    </style>
    '''

def downsample_video(video_path):
    """Extract 10 evenly spaced frames from a video."""
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def apply_style(style_name: str, positive: str, negative: str = ""):
    """Apply a chosen quality style to the prompt."""
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + negative

# --------- Tab 1: Chat Interface (Multimodal) ---------
def chat_generate(input_dict: dict, chat_history: list, 
                  max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
                  temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
    text = input_dict["text"]
    files = input_dict.get("files", [])
    lower_text = text.strip().lower()

    # If image generation command
    if lower_text.startswith("@image"):
        prompt = text[len("@image"):].strip()
        yield progress_bar_html("Generating Image")
        image_paths, used_seed = generate_image_fn(
            prompt=prompt,
            negative_prompt="",
            use_negative_prompt=False,
            seed=1,
            width=1024,
            height=1024,
            guidance_scale=3,
            num_inference_steps=25,
            randomize_seed=True,
            use_resolution_binning=True,
            num_images=1,
        )
        yield gr.Image.update(value=image_paths[0])
        return

    # If video inference command
    if lower_text.startswith("@video-infer"):
        prompt = text[len("@video-infer"):].strip()
        if files:
            video_path = files[0]
            frames = downsample_video(video_path)
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
            for frame in frames:
                image, timestamp = frame
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
                messages[1]["content"].append({"type": "image", "url": image_path})
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
        inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt").to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Qwen2VL")
        for new_text in streamer:
            buffer += new_text.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
        return

    # Check for TTS command
    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})

    if files:
        # Handle multimodal chat with images
        images = [load_image(f) for f in files]
        messages = [{
            "role": "user",
            "content": [{"type": "image", "image": image} for image in images] + [{"type": "text", "text": text}]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Thinking...")
        for new_text in streamer:
            buffer += new_text.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()
        outputs = []
        yield progress_bar_html("Processing...")
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
        yield final_response
        if is_tts and voice:
            output_file = text_to_speech(final_response, voice)
            yield gr.Audio.update(value=output_file)

# Helper function for image generation (used in chat @image branch)
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False,
                      seed: int = 1, width: int = 1024, height: int = 1024,
                      guidance_scale: float = 3, num_inference_steps: int = 25,
                      randomize_seed: bool = False, use_resolution_binning: bool = True,
                      num_images: int = 1, progress=None):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if batch_options.get("negative_prompt") is not None:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        if device.type == "cuda":
            with torch.autocast("cuda", dtype=torch.float16):
                outputs = sd_pipe(**batch_options)
        else:
            outputs = sd_pipe(**batch_options)
        images.extend(outputs.images)
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# --------- Tab 2: SDXL Image Generation ---------
@spaces.GPU(duration=180, enable_queue=True)
def sdxl_generate(prompt: str, negative_prompt: str = "", use_negative_prompt: bool = True,
                  seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3,
                  randomize_seed: bool = False, style_name: str = DEFAULT_STYLE_NAME,
                  lora_model: str = "Realism (face/character)πŸ‘¦πŸ»", progress=None):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
    if not use_negative_prompt:
        effective_negative_prompt = ""
    model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
    # Set the adapter for the current generation
    sd_pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
    sd_pipe.set_adapters(adapter_name)
    images = sd_pipe(
        prompt=positive_prompt,
        negative_prompt=effective_negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=20,
        num_images_per_prompt=1,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# --------- Tab 3: Qwen2VL OCR & Text Generation ---------
def qwen2vl_ocr_textgen(prompt: str, image_file):
    if image_file is None:
        return "Please upload an image."
    # Load the image
    image = load_image(image_file)
    messages = [
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image", "image": image}]}
    ]
    inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True,
                                             return_dict=True, return_tensors="pt").to("cuda")
    outputs = model_m.generate(
        **inputs,
        max_new_tokens=1024,
        do_sample=True,
        temperature=0.6,
        top_p=0.9,
        top_k=50,
        repetition_penalty=1.2,
    )
    response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    return response

# --------- Building the Gradio Interface with Tabs ---------
with gr.Blocks(title="Combined Demo") as demo:
    gr.Markdown("# Combined Demo: Chat, SDXL Image Gen & Qwen2VL OCR/TextGen")
    with gr.Tabs():
        # --- Tab 1: Chat Interface ---
        with gr.Tab("Chat Interface"):
            chat_interface = gr.ChatInterface(
                fn=chat_generate,
                additional_inputs=[
                    gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
                    gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
                    gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
                    gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
                    gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
                ],
                examples=[
                    ["Write the Python Program for Array Rotation"],
                    [{"text": "summarize the letter", "files": ["examples/1.png"]}],
                    [{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}],
                    ["@image Chocolate dripping from a donut"],
                    ["@tts1 Who is Nikola Tesla, and why did he die?"],
                ],
                cache_examples=False,
                type="messages",
                description="Use commands like **@image**, **@video-infer**, **@tts1**, or plain text.",
                textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple",
                                               placeholder="Type your query (e.g., @tts1 for TTS, @image for image gen, etc.)"),
                stop_btn="Stop Generation",
                multimodal=True,
            )
        # --- Tab 2: SDXL Image Generation ---
        with gr.Tab("SDXL Gen Image"):
            with gr.Row():
                prompt_in = gr.Textbox(label="Prompt", placeholder="Enter prompt for image generation")
                negative_prompt_in = gr.Textbox(label="Negative prompt", placeholder="Enter negative prompt", lines=2)
            with gr.Row():
                seed_in = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_in = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width_in = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
                height_in = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
            guidance_in = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0)
            style_in = gr.Radio(choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style")
            lora_in = gr.Dropdown(choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)πŸ‘¦πŸ»", label="LoRA Selection")
            run_button_img = gr.Button("Generate Image")
            output_gallery = gr.Gallery(label="Generated Image", columns=1, preview=True)
            seed_output = gr.Number(label="Seed used")
            run_button_img.click(fn=sdxl_generate,
                                 inputs=[prompt_in, negative_prompt_in, randomize_in, seed_in, width_in, height_in, guidance_in, randomize_in, style_in, lora_in],
                                 outputs=[output_gallery, seed_output])
        # --- Tab 3: Qwen2VL OCR & Text Generation ---
        with gr.Tab("Qwen2VL OCR/TextGen"):
            with gr.Row():
                qwen_prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt for OCR / text generation")
                qwen_image = gr.Image(label="Upload Image", type="filepath")
            run_button_qwen = gr.Button("Run Qwen2VL")
            qwen_output = gr.Textbox(label="Output")
            run_button_qwen.click(fn=qwen2vl_ocr_textgen, inputs=[qwen_prompt, qwen_image], outputs=qwen_output)

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True)