File size: 9,199 Bytes
bdb88e6
 
 
 
2e94d15
 
bdb88e6
b25aff8
 
bdb88e6
 
cb45985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb88e6
7722042
fd13eb7
 
bdb88e6
fd13eb7
 
bdb88e6
 
b25aff8
 
669e4e1
b25aff8
 
 
 
bdb88e6
fb0589f
b25aff8
 
 
fb0589f
bdb88e6
b25aff8
 
bdb88e6
b25aff8
 
 
 
 
bdb88e6
b25aff8
 
bdb88e6
b25aff8
 
bdb88e6
 
 
b25aff8
bdb88e6
 
 
 
 
 
 
 
 
82d42f5
b25aff8
bdb88e6
 
b25aff8
 
bdb88e6
 
b25aff8
 
 
7722042
fb0589f
bdb88e6
 
 
b25aff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb88e6
 
34d02f1
cb45985
dd5d371
fb0589f
3dae543
dd5d371
3dae543
 
 
 
 
 
 
 
 
0791767
dd5d371
 
fb0589f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5d371
fb0589f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5d371
b313d69
0791767
b313d69
8868c4d
b313d69
 
 
8868c4d
0791767
 
 
 
8868c4d
 
b25aff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7722042
bdb88e6
 
b25aff8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import random
import uuid
import json
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable

class Seafoam(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.gray,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )

seafoam = Seafoam()

css = '''
.gradio-container {
    max-width: 100%;
    margin: 0 auto;
}
h1 { text-align: center; }
footer { visibility: hidden; }
'''

examples = [
    "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
    "A glass cup of cold coffee placed on a rustic wooden table, surrounded by soft morning light. The coffee is rich, dark, and topped with a light layer of creamy froth, droplets of condensation sliding down the glass.",
    "Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw",
    "Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30  --ar 67:101 --v 5",
    "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
]

MODEL_ID = os.getenv("MODEL_VAL_PATH")  # SG161222/RealVisXL_V5.0_Lightning or SG161222/RealVisXL_V4.0_Lightning
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

if USE_TORCH_COMPILE:
    pipe.compile()

if ENABLE_CPU_OFFLOAD:
    pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    num_images: int = 4,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)

    image_paths = [save_image(img) for img in images]
    return image_paths, seed

with gr.Blocks(theme=seafoam, css=css) as demo:
    gr.Markdown("## STABLE HAMSTER")

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Row():
                prompt = gr.Text(
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run", scale=0, variant="primary")

            result = gr.Gallery(show_label=False, format="png", columns=2, object_fit="contain")

            with gr.Accordion("Advanced Settings", open=False):
                num_images = gr.Slider(
                    label="Number of Images",
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=4,
                )
                with gr.Row():
                    use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                    negative_prompt = gr.Text(
                        label="Negative prompt",
                        max_lines=5,
                        lines=4,
                        placeholder="Enter a negative prompt",
                        value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                        visible=True,
                    )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row(visible=True):
                    width = gr.Slider(
                        label="Width",
                        minimum=512,
                        maximum=MAX_IMAGE_SIZE,
                        step=64,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=512,
                        maximum=MAX_IMAGE_SIZE,
                        step=64,
                        value=1024,
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.1,
                        maximum=6,
                        step=0.1,
                        value=3.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=25,
                        step=1,
                        value=23,
                    )

        with gr.Column(scale=1):
            gr.Examples(
                examples=examples,
                inputs=prompt,
                cache_examples=False,
            )

        use_negative_prompt.change(
            fn=lambda x: gr.update(visible=x),
            inputs=use_negative_prompt,
            outputs=negative_prompt,
            api_name=False,
        )
    
    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
            num_images
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=40).launch(ssr_mode=False)