prithivMLmods's picture
Update app.py
764dc74 verified
raw
history blame
19.7 kB
import os
import random
import uuid
from typing import Tuple, Dict
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTIONz= """## SDXL-LoRA-DLC ⚑
Select a base model, choose a LoRA, and generate images!
"""
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_STYLE_NAME = "3840 x 2160"
USE_TORCH_COMPILE = False # Set to True if you want to try torch compile (might be faster but requires compatible hardware/drivers)
ENABLE_CPU_OFFLOAD = False # Set to True to offload parts of the model to CPU (saves VRAM but slower)
# --- Model Definitions ---
# Dictionary mapping user-friendly names to Hugging Face model IDs
pipelines_info = {
"RealVisXL V4.0 Lightning": "SG161222/RealVisXL_V4.0_Lightning",
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
# Add more SDXL base models here if desired
# "Another SDXL Model": "stabilityai/stable-diffusion-xl-base-1.0", # Example
}
# Dictionary to cache loaded pipelines
loaded_pipelines: Dict[str, StableDiffusionXLPipeline] = {}
# --- LoRA Definitions ---
LORA_OPTIONS = {
# Name: (HuggingFace Repo ID, Weight Filename, Adapter Name)
"Realism (face/character)πŸ‘¦πŸ»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
"Pixar (art/toons)πŸ™€": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
"Photoshoot (camera/film)πŸ“Έ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
"Clothing (hoodies/pant/shirts)πŸ‘”": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
"Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
"Fashion Product (wearing/usable)πŸ‘œ": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
"Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
"Modern Clothing (trend/new)πŸ‘•": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
"Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
"Liquid Wallpaper (minimal/illustration)πŸ–ΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
"Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
"Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
"Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
# --- Style Definitions ---
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "worst quality, low quality", # Added basic negative prompt
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
# --- Utility Functions ---
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
# Get the base style prompt and negative prompt
base_p, base_n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
# Combine the base negative prompt with the user's negative prompt
# Ensure user's negative prompt is appended correctly
if negative and base_n:
combined_n = f"{base_n}, {negative}"
elif negative:
combined_n = negative
else:
combined_n = base_n
# Apply the positive prompt template
final_p = base_p.replace("{prompt}", positive)
return final_p, combined_n
def load_predefined_images():
# Ensure the assets directory and images exist
asset_dir = "assets"
image_files = [
"1.png", "2.png", "3.png",
"4.png", "5.png", "6.png",
"7.png", "8.png", "9.png",
]
predefined_images = []
if os.path.exists(asset_dir):
for img_file in image_files:
img_path = os.path.join(asset_dir, img_file)
if os.path.exists(img_path):
predefined_images.append(img_path)
else:
print(f"Warning: Predefined image not found: {img_path}")
else:
print(f"Warning: Asset directory not found: {asset_dir}")
# If no images were found, return None or an empty list
# to avoid errors in gr.Gallery
return predefined_images if predefined_images else None
# --- Core Generation Function ---
@spaces.GPU(duration=180, enable_queue=True)
def generate(
selected_base_model_name: str, # New input for base model selection
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 4, # Lightning models use fewer steps
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
lora_choice: str = "Realism (face/character)πŸ‘¦πŸ»",
progress=gr.Progress(track_tqdm=True),
):
if not torch.cuda.is_available():
raise gr.Error("GPU not available. This Space requires a GPU to run.")
seed = int(randomize_seed_fn(seed, randomize_seed))
torch.manual_seed(seed) # Ensure reproducibility if seed is fixed
# --- Pipeline Loading and Caching ---
pipe = None
if selected_base_model_name in loaded_pipelines:
print(f"Using cached pipeline: {selected_base_model_name}")
pipe = loaded_pipelines[selected_base_model_name]
else:
print(f"Loading pipeline: {selected_base_model_name}")
model_id = pipelines_info[selected_base_model_name]
pipe = StableDiffusionXLPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16" if torch.cuda.is_available() else None # Use fp16 variant if available on GPU
)
# Apply optimizations based on flags
if ENABLE_CPU_OFFLOAD:
print("Enabling CPU Offload")
pipe.enable_model_cpu_offload()
else:
pipe.to("cuda") # Default: move entire pipeline to GPU
# Configure scheduler (important for Lightning models)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load ALL LoRAs onto this newly loaded pipeline instance
print(f"Loading LoRAs for {selected_base_model_name}...")
for lora_name, (model_repo, weight_file, adapter_tag) in LORA_OPTIONS.items():
try:
print(f" Loading LoRA: {lora_name} ({adapter_tag})")
pipe.load_lora_weights(model_repo, weight_name=weight_file, adapter_name=adapter_tag)
except Exception as e:
print(f" Failed to load LoRA {lora_name}: {e}")
# Optionally raise an error or continue without this LoRA
# raise gr.Error(f"Failed to load LoRA {lora_name}. Check repo/file names.")
if USE_TORCH_COMPILE:
print("Attempting to compile UNet (may take time)...")
try:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("UNet compiled successfully.")
except Exception as e:
print(f"Torch compile failed: {e}. Running without compilation.")
# Cache the fully loaded and configured pipeline
loaded_pipelines[selected_base_model_name] = pipe
print(f"Pipeline {selected_base_model_name} loaded and cached.")
# --- Prompt Styling ---
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt if use_negative_prompt else "")
# --- LoRA Selection ---
if lora_choice not in LORA_OPTIONS:
raise gr.Error(f"Selected LoRA '{lora_choice}' not found in options.")
_lora_repo, _lora_weight, lora_adapter_name = LORA_OPTIONS[lora_choice]
print(f"Activating LoRA: {lora_choice} (Adapter: {lora_adapter_name})")
pipe.set_adapters(lora_adapter_name)
# Note: LoRA weight/scale is often handled within the pipeline or during loading.
# If you need adjustable LoRA scale, you might need `add_weighted_adapter` or similar.
# For simplicity here, we assume the default scale is used.
# cross_attention_kwargs={"scale": 0.8} # Example if you need to set scale explicitly
# --- Image Generation ---
print("Starting image generation...")
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt=positive_prompt,
negative_prompt=effective_negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps, # Use steps suitable for Lightning
generator=generator,
num_images_per_prompt=1,
# cross_attention_kwargs=cross_attention_kwargs, # Add if scale needed
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print("Image generation complete.")
return image_paths, seed
# --- Gradio UI ---
css = '''
.gradio-container{max-width: 860px !important; margin: auto;}
h1{text-align:center}
.gr-prose { text-align: center; }
#model-select-row { justify-content: center; } /* Center dropdowns */
/* Make gallery taller */
#result_gallery .h-\[400px\] {
height: 600px !important; /* Adjust height as needed */
}
#predefined_gallery .h-\[400px\] {
height: 300px !important; /* Adjust height as needed */
}
footer { visibility: hidden }
'''
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTIONz)
with gr.Row(elem_id="model-select-row"):
model_selector = gr.Dropdown(
label="Select Base Model",
choices=list(pipelines_info.keys()),
value=list(pipelines_info.keys())[0], # Default to the first model
scale=1
)
model_choice = gr.Dropdown(
label="Select LoRA Style",
choices=list(LORA_OPTIONS.keys()),
value="Realism (face/character)πŸ‘¦πŸ»", # Default LoRA
scale=1
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2, # Allow slightly more room for prompt
placeholder="Enter your prompt (e.g., 'Astronaut riding a horse')",
container=False,
scale=5, # Make prompt input wider
)
run_button = gr.Button("Generate", scale=1, variant="primary") # Make button stand out
# Use Tabs for Main Result and Examples/Gallery
with gr.Tabs():
with gr.TabItem("Result", id="result_tab"):
result = gr.Gallery(
label="Generated Image", elem_id="result_gallery",
columns=1, preview=True, show_label=False, height=600 # Make gallery taller
)
# Display the seed used for the generated image
used_seed = gr.Number(label="Seed Used", interactive=False)
with gr.TabItem("Examples & Predefined Gallery", id="examples_tab"):
gr.Markdown("### Prompt Examples")
gr.Examples(
examples=[
"cinematic photo, a man sitting on a chair in a dark room, realistic", # Realism example
"pixar style 3d render of a cute cat astronaut exploring mars", # Pixar example
"studio photography, high fashion model wearing a futuristic silver hoodie, dramatic lighting", # Photoshoot/Clothing example
"minimalist vector art illustration of a mountain range at sunset, liquid style", # Minimalist/Liquid example
"pencil sketch drawing of an old wise wizard with a long beard", # Pencil Art example
],
inputs=[prompt], # Only update the prompt field from examples
outputs=[result, used_seed], # Define outputs for example generation
fn=lambda p: generate( # Need a lambda to pass default values for other args
selected_base_model_name=list(pipelines_info.keys())[0], # Use default model for examples
prompt=p,
lora_choice="Realism (face/character)πŸ‘¦πŸ»", # Use default LoRA for examples
# Add other default args from 'generate' signature if needed
negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
use_negative_prompt=True,
seed=0, # Or make examples use random seed?
width=1024,
height=1024,
guidance_scale=3.0,
num_inference_steps=4,
randomize_seed=True, # Randomize seed for examples
style_name=DEFAULT_STYLE_NAME,
),
cache_examples=False, # Recalculate examples if needed
label="Click an example to generate"
)
gr.Markdown("### Predefined Image Gallery")
predefined_gallery = gr.Gallery(
label="Image Gallery", elem_id="predefined_gallery",
columns=3, show_label=False, value=load_predefined_images(), height=300
)
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Quality Style",
)
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use Negative Prompt", value=True)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=2,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, worst quality, low quality",
placeholder="Enter concepts to avoid...",
visible=True, # Initially visible, controlled by checkbox change
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True, # Initially visible, maybe hide if randomize is checked?
interactive=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=1536, # Adjusted max based on typical SDXL use
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1536, # Adjusted max based on typical SDXL use
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale (CFG)",
minimum=0.0,
maximum=10.0, # Lightning models often use low CFG
step=0.1,
value=1.5, # Default low CFG for Lightning
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=20, # Lightning models need very few steps
step=1,
value=4, # Default steps for Lightning
)
# --- Event Listeners ---
# Show/hide negative prompt input based on checkbox
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
# Show/hide seed slider based on randomize checkbox
randomize_seed.change(
fn=lambda x: gr.update(interactive=not x), # Make slider non-interactive if randomizing
inputs=randomize_seed,
outputs=seed,
api_name=False,
)
# Main generation trigger
inputs_list = [
model_selector, # Add model selector
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps, # Add steps slider
randomize_seed,
style_selection,
model_choice, # This is the LoRA choice dropdown
]
outputs_list = [result, used_seed] # Output gallery and the seed number
prompt.submit(
fn=generate,
inputs=inputs_list,
outputs=outputs_list,
api_name="run_prompt_submit" # Optional: Define API name
)
run_button.click(
fn=generate,
inputs=inputs_list,
outputs=outputs_list,
api_name="run_button_click" # Optional: Define API name
)
# --- Launch ---
if __name__ == "__main__":
if not torch.cuda.is_available():
print("Warning: No CUDA GPU detected. Running on CPU will be extremely slow or may fail.")
DESCRIPTIONz += "\n<p>⚠️<b>WARNING: No GPU detected. Running on CPU is very slow and may not work reliably.</b> Consider using a GPU instance.</p>"
# Optionally disable parts of the UI or exit if CPU is unacceptable
# exit()
# Ensure asset directory exists for predefined images (optional but good practice)
if not os.path.exists("assets"):
print("Warning: 'assets' directory not found. Predefined images will not load.")
demo.queue(max_size=20).launch(debug=False) # Set debug=True for more logs if needed