File size: 830 Bytes
bd503b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
from transformers import pipeline
from fastapi import FastAPI

# Initialize the summarization pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

# Define the summarization function
def summarize_text(input_text):
    summary = summarizer(input_text, max_length=130, min_length=30, do_sample=False)
    return summary[0]['summary_text']

# Create the Gradio app
app = gr.Interface(
    fn=summarize_text,
    inputs=gr.Textbox(lines=10, label="Input Text"),
    outputs=gr.Textbox(label="Summarized Text"),
    title="Text Summarization",
    description="Enter a block of text to summarize it using the BART model fine-tuned on CNN/Daily Mail."
)

# Mount the Gradio app on FastAPI
fastapi_app = FastAPI()
fastapi_app.mount("/", app)

if __name__ == "__main__":
    app.launch()