File size: 830 Bytes
bd503b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from transformers import pipeline
from fastapi import FastAPI
# Initialize the summarization pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Define the summarization function
def summarize_text(input_text):
summary = summarizer(input_text, max_length=130, min_length=30, do_sample=False)
return summary[0]['summary_text']
# Create the Gradio app
app = gr.Interface(
fn=summarize_text,
inputs=gr.Textbox(lines=10, label="Input Text"),
outputs=gr.Textbox(label="Summarized Text"),
title="Text Summarization",
description="Enter a block of text to summarize it using the BART model fine-tuned on CNN/Daily Mail."
)
# Mount the Gradio app on FastAPI
fastapi_app = FastAPI()
fastapi_app.mount("/", app)
if __name__ == "__main__":
app.launch()
|