Spaces:
Runtime error
Runtime error
File size: 5,018 Bytes
2ad1bab e25282d 292db1c f7a2a3f 292db1c 1652c9d 292db1c f7a2a3f b0a5997 f7a2a3f 48eb165 f7a2a3f 17b0fdc f7a2a3f a984ff2 f7a2a3f 49cb756 f7a2a3f c1792e8 f7a2a3f a984ff2 717c5f8 a984ff2 f7a2a3f 9a4f043 f7a2a3f 53b77b7 f7a2a3f 9a4f043 f7a2a3f 9a4f043 f7a2a3f 9a4f043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
from AinaTheme import AinaGradioTheme
from transformers import pipeline
import gradio as gr
from gradio.components import Textbox, Button, HighlightedText, Markdown
import os
from dotenv import load_dotenv
load_dotenv()
MAX_INPUT_CHARACTERS= int(os.environ.get("MAX_INPUT_CHARACTERS", default=1000))
ner_pipeline = pipeline("token-classification", model="projecte-aina/multiner_ceil",aggregation_strategy="simple")
def submit_input(text):
if text.strip() == "":
gr.Warning('Not possible to process an empty input.')
return None
model_output = ner_pipeline(text)
if model_output is None:
gr.Warning('An error occurred. Please try again later.')
return {"text": text, "entities": model_output}
def check_max_characters(text, max_char):
if len(text.strip()) > int(max_char):
return gr.update(interactive = True), gr.update(interactive = False)
return gr.update(interactive = True), gr.update(interactive = True)
def clear():
return (
None,
None,
)
with gr.Blocks(**AinaGradioTheme().get_kwargs()) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
""" **Multiner** is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [BERTa] model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
It has been trained with a dataset (CEIL: Catalan Entity Identification and Linking ) that contains 9 main types and 52 subtypes on all kinds of short texts, with almost 59K documents.
This result has been driven and funded by the Government of Catalonia through the [Aina](https://projecteaina.cat/).
"""
)
with gr.Row( equal_height=True):
with gr.Column(variant="panel"):
placeholder_max_characters = Textbox(
visible=False,
interactive=False,
value= MAX_INPUT_CHARACTERS
)
input_ = Textbox(
lines=3,
label="Input",
placeholder="e.g. Enter sentence here"
)
with gr.Row(variant="panel", equal_height=True):
gr.HTML("""<span id="countertext" style="display: flex; justify-content: start; color:#ef4444; font-weight: bold;"></span>""")
gr.HTML(f"""<span id="counter" style="display: flex; justify-content: end;"> <span id="inputlenght">0</span> / {MAX_INPUT_CHARACTERS}</span>""")
with gr.Column(variant="panel"):
output = HighlightedText(
container=True,
label="Output",
)
with gr.Row(variant="panel"):
clear_btn = Button(
"Clear",
)
submit_btn = Button(
"Submit",
variant="primary",
)
with gr.Row():
with gr.Column(scale=0.5):
gr.Examples(
label="Example:",
examples=[
["""El raper nord-americà Travis Scott ha gravat el videoclip de la seva canço 'Circus Maximus' amb els Castellers de Vilafranca. Segons ha publicat la 'Revista Castells' i ha confirmat l'Agència Catalana de Notícies (ACN), el rodatge es va fer el 2 de juliol a la Tarraco Arena Plaça (TAP) de Tarragona."""],
],
inputs=[input_],
outputs=output,
fn=submit_input,
)
gr.Examples(
label="Example:",
examples=[
["""Un jove Marc Guiu es dona a conèixer davant l'Athletic Club i dona una victòria importantíssima al Barça (1-0). D'aquesta manera, el conjunt blaugrana arriba al Clàssic a només un punt de Reial Madrid."""],
],
inputs=[input_],
outputs=output,
fn=submit_input,
)
input_.change(
fn=check_max_characters,
inputs=[input_, placeholder_max_characters],
outputs=[clear_btn, submit_btn]
)
input_.change(fn=None, inputs=[input_, placeholder_max_characters], _js="""(i, m) => {
document.getElementById('countertext').textContent = i.length > m && 'Max length ' + m + ' characters. ' || ''
document.getElementById('inputlenght').textContent = i.length + ' '
document.getElementById('inputlenght').style.color = (i.length > m) ? "#ef4444" : "";
}""")
clear_btn.click(
fn=clear,
inputs=[],
outputs=[input_, output],
queue=False
)
submit_btn.click(
fn=submit_input,
inputs=[input_],
outputs=[output]
)
if __name__ == "__main__":
demo.queue(concurrency_count=1, api_open=False)
demo.launch(show_api=False) |