Spaces:
Running
on
Zero
A newer version of the Gradio SDK is available:
5.23.3
Shap-E
[[open-in-colab]]
Shap-Eλ λΉλμ€ κ²μ κ°λ°, μΈν λ¦¬μ΄ λμμΈ, 건μΆμ μ¬μ©ν μ μλ 3D μμ μ μμ±νκΈ° μν conditional λͺ¨λΈμ λλ€. λκ·λͺ¨ 3D μμ λ°μ΄ν°μ μ νμ΅λμκ³ , κ° μ€λΈμ νΈμ λ λ§μ λ·°λ₯Ό λ λλ§νκ³ 4K point cloud λμ 16Kλ₯Ό μμ±νλλ‘ νμ²λ¦¬ν©λλ€. Shap-E λͺ¨λΈμ λ λ¨κ³λ‘ νμ΅λ©λλ€:
- μΈμ½λκ° 3D μμ μ ν¬μΈνΈ ν΄λΌμ°λμ λ λλ§λ λ·°λ₯Ό λ°μλ€μ΄κ³ μμ μ λνλ΄λ implicit functionsμ νλΌλ―Έν°λ₯Ό μΆλ ₯ν©λλ€.
- μΈμ½λκ° μμ±ν latentsλ₯Ό λ°νμΌλ‘ diffusion λͺ¨λΈμ νλ ¨νμ¬ neural radiance fields(NeRF) λλ textured 3D λ©μλ₯Ό μμ±νμ¬ λ€μ΄μ€νΈλ¦Ό μ ν리μΌμ΄μ μμ 3D μμ μ λ μ½κ² λ λλ§νκ³ μ¬μ©ν μ μλλ‘ ν©λλ€.
μ΄ κ°μ΄λμμλ Shap-Eλ₯Ό μ¬μ©νμ¬ λλ§μ 3D μμ μ μμ±νλ λ°©λ²μ 보μ λλ€!
μμνκΈ° μ μ λ€μ λΌμ΄λΈλ¬λ¦¬κ° μ€μΉλμ΄ μλμ§ νμΈνμΈμ:
# Colabμμ νμν λΌμ΄λΈλ¬λ¦¬λ₯Ό μ€μΉνκΈ° μν΄ μ£Όμμ μ μΈνμΈμ
#!pip install -q diffusers transformers accelerate trimesh
Text-to-3D
3D κ°μ²΄μ gifλ₯Ό μμ±νλ €λ©΄ ν
μ€νΈ ν둬ννΈλ₯Ό [ShapEPipeline
]μ μ λ¬ν©λλ€. νμ΄νλΌμΈμ 3D κ°μ²΄λ₯Ό μμ±νλ λ° μ¬μ©λλ μ΄λ―Έμ§ νλ μ 리μ€νΈλ₯Ό μμ±ν©λλ€.
import torch
from diffusers import ShapEPipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16, variant="fp16")
pipe = pipe.to(device)
guidance_scale = 15.0
prompt = ["A firecracker", "A birthday cupcake"]
images = pipe(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=64,
frame_size=256,
).images
μ΄μ [~utils.export_to_gif
] ν¨μλ₯Ό μ¬μ©νμ¬ μ΄λ―Έμ§ νλ μ 리μ€νΈλ₯Ό 3D κ°μ²΄μ gifλ‘ λ³νν©λλ€.
from diffusers.utils import export_to_gif
export_to_gif(images[0], "firecracker_3d.gif")
export_to_gif(images[1], "cake_3d.gif")


Image-to-3D
λ€λ₯Έ μ΄λ―Έμ§λ‘λΆν° 3D κ°μ²΄λ₯Ό μμ±νλ €λ©΄ [ShapEImg2ImgPipeline
]μ μ¬μ©ν©λλ€. κΈ°μ‘΄ μ΄λ―Έμ§λ₯Ό μ¬μ©νκ±°λ μμ ν μλ‘μ΄ μ΄λ―Έμ§λ₯Ό μμ±ν μ μμ΅λλ€. Kandinsky 2.1 λͺ¨λΈμ μ¬μ©νμ¬ μ μ΄λ―Έμ§λ₯Ό μμ±ν΄ λ³΄κ² μ΅λλ€.
from diffusers import DiffusionPipeline
import torch
prior_pipeline = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipeline = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
prompt = "A cheeseburger, white background"
image_embeds, negative_image_embeds = prior_pipeline(prompt, guidance_scale=1.0).to_tuple()
image = pipeline(
prompt,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
).images[0]
image.save("burger.png")
μΉμ¦λ²κ±°λ₯Ό [ShapEImg2ImgPipeline
]μ μ λ¬νμ¬ 3D representationμ μμ±ν©λλ€.
from PIL import Image
from diffusers import ShapEImg2ImgPipeline
from diffusers.utils import export_to_gif
pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16, variant="fp16").to("cuda")
guidance_scale = 3.0
image = Image.open("burger.png").resize((256, 256))
images = pipe(
image,
guidance_scale=guidance_scale,
num_inference_steps=64,
frame_size=256,
).images
gif_path = export_to_gif(images[0], "burger_3d.gif")


λ©μ μμ±νκΈ°
Shap-Eλ λ€μ΄μ€νΈλ¦Ό μ ν리μΌμ΄μ
μ λ λλ§ν textured λ©μ μΆλ ₯μ μμ±ν μλ μλ μ μ°ν λͺ¨λΈμ
λλ€. μ΄ μμ μμλ π€ Datasets λΌμ΄λΈλ¬λ¦¬μμ Dataset viewerλ₯Ό μ¬μ©ν΄ λ©μ μκ°νλ₯Ό μ§μνλ glb
νμΌλ‘ λ³νν©λλ€.
output_type
맀κ°λ³μλ₯Ό "mesh"
λ‘ μ§μ ν¨μΌλ‘μ¨ [ShapEPipeline
]κ³Ό [ShapEImg2ImgPipeline
] λͺ¨λμ λν λ©μ μΆλ ₯μ μμ±ν μ μμ΅λλ€:
import torch
from diffusers import ShapEPipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16, variant="fp16")
pipe = pipe.to(device)
guidance_scale = 15.0
prompt = "A birthday cupcake"
images = pipe(prompt, guidance_scale=guidance_scale, num_inference_steps=64, frame_size=256, output_type="mesh").images
λ©μ μΆλ ₯μ ply
νμΌλ‘ μ μ₯νλ €λ©΄ [~utils.export_to_ply
] ν¨μλ₯Ό μ¬μ©ν©λλ€:
μ νμ μΌλ‘ [~utils.export_to_obj
] ν¨μλ₯Ό μ¬μ©νμ¬ λ©μ μΆλ ₯μ obj
νμΌλ‘ μ μ₯ν μ μμ΅λλ€. λ€μν νμμΌλ‘ λ©μ μΆλ ₯μ μ μ₯ν μ μμ΄ λ€μ΄μ€νΈλ¦Όμμ λμ± μ μ°νκ² μ¬μ©ν μ μμ΅λλ€!
from diffusers.utils import export_to_ply
ply_path = export_to_ply(images[0], "3d_cake.ply")
print(f"Saved to folder: {ply_path}")
κ·Έ λ€μ trimesh λΌμ΄λΈλ¬λ¦¬λ₯Ό μ¬μ©νμ¬ ply
νμΌμ glb
νμΌλ‘ λ³νν μ μμ΅λλ€:
import trimesh
mesh = trimesh.load("3d_cake.ply")
mesh_export = mesh.export("3d_cake.glb", file_type="glb")
κΈ°λ³Έμ μΌλ‘ λ©μ μΆλ ₯μ μλμͺ½ μμ μ μ΄μ μ΄ λ§μΆ°μ Έ μμ§λ§ νμ λ³νμ μ μ©νμ¬ κΈ°λ³Έ μμ μ λ³κ²½ν μ μμ΅λλ€:
import trimesh
import numpy as np
mesh = trimesh.load("3d_cake.ply")
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
mesh = mesh.apply_transform(rot)
mesh_export = mesh.export("3d_cake.glb", file_type="glb")
λ©μ νμΌμ λ°μ΄ν°μ λ ν¬μ§ν 리μ μ λ‘λν΄ Dataset viewerλ‘ μκ°ννμΈμ!
