File size: 1,122 Bytes
e15f1e0
9a229a7
993e75e
75eaa7d
1c8cf8d
993e75e
9a229a7
ad59b0f
e15f1e0
9a229a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e249f7d
 
a457627
 
57151f6
 
e15f1e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import BertForQuestionAnswering
from transformers import BertTokenizerFast
import torch

tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def get_prediction(context, question):
  inputs = tokenizer.encode_plus(question, context, return_tensors='pt').to(device)
  outputs = model(**inputs)
  
  answer_start = torch.argmax(outputs[0])  
  answer_end = torch.argmax(outputs[1]) + 1 
  
  answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
  
  return answer
  
def question_answer(context, question):
  prediction = get_prediction(context,question)
  return prediction
    
def greet(texts):
    question = texts[:int(len(texts)/2)]
    answer = texts[int(len(texts)/2):]
    # for question, answer in texts:
    #     question_answer(context, question)
    return question


iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()