Spaces:
Paused
Paused
File size: 1,122 Bytes
e15f1e0 9a229a7 993e75e 75eaa7d 1c8cf8d 993e75e 9a229a7 ad59b0f e15f1e0 9a229a7 e249f7d a457627 57151f6 e15f1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import BertForQuestionAnswering
from transformers import BertTokenizerFast
import torch
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_prediction(context, question):
inputs = tokenizer.encode_plus(question, context, return_tensors='pt').to(device)
outputs = model(**inputs)
answer_start = torch.argmax(outputs[0])
answer_end = torch.argmax(outputs[1]) + 1
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
return answer
def question_answer(context, question):
prediction = get_prediction(context,question)
return prediction
def greet(texts):
question = texts[:int(len(texts)/2)]
answer = texts[int(len(texts)/2):]
# for question, answer in texts:
# question_answer(context, question)
return question
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch() |