|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import torch |
|
|
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL |
|
from utils import randomize_seed_fn |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
def model_load(): |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
pipe.load_lora_weights("jjuun/vivid_color_style") |
|
|
|
return pipe.to('cuda') |
|
|
|
|
|
def sdxl_process(seed, prompt, additional_prompt, negative_prompt, num_steps, guidance_scale): |
|
pipe = model_load() |
|
generator = torch.Generator("cuda") |
|
generator.manual_seed(int(seed)) |
|
|
|
special_prompt = 'jjj, scratch art style' |
|
prompt = f'{special_prompt}, {prompt}, with a black background' |
|
output = pipe(prompt, additional_prompt, negative_prompt=negative_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, |
|
generator=generator).images[0] |
|
|
|
return output |
|
|
|
|
|
title = "๐ Colorful illustration" |
|
description_en = "๐ How to use: please make sure to include 'a colorful' in prompt and click Run button!" |
|
|
|
|
|
def create_demo(): |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>") |
|
gr.Markdown(f"<h3 style='text-align: center'>{description_en}</h3>") |
|
gr.Markdown(f"<a href='https://github.com/jjuun0'><img src='https://img.shields.io/badge/GitHub-181717?style=flat-square&logo=GitHub&logoColor=white'/></a>") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
|
|
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1) |
|
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
a_prompt = gr.Textbox(label="Additional prompt", value="") |
|
n_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value="", |
|
) |
|
with gr.Column(): |
|
result = gr.Image(label="Output") |
|
result_seed = gr.Textbox(label="Used seed") |
|
|
|
gr.Examples( |
|
|
|
examples= [["a colorful fox", "20", "9", "0", "", "", "examples/fox.png"], |
|
["a colorful messi", "20", "9", "191251724", "", "", "examples/messi.png"], |
|
["a colorful pyramid", "20", "9", "0", "", "", "examples/pyramid.png"], |
|
["a colorful octopus playing violin", "20", "9", "0", "", "", "examples/octopus.png"]], |
|
inputs = [prompt, num_steps, guidance_scale, seed, a_prompt, n_prompt, result] |
|
) |
|
|
|
inputs = [ |
|
seed, |
|
prompt, |
|
a_prompt, |
|
n_prompt, |
|
num_steps, |
|
guidance_scale, |
|
] |
|
|
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=result_seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=sdxl_process, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
|
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
demo = create_demo() |
|
demo.queue().launch() |
|
|