Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
import streamlit as st | |
from datetime import datetime | |
from groq import Groq | |
from logic import LLMClient, CodeProcessor | |
from batch_code_logic_csv import csv_read_batch_code | |
import zipfile | |
import io | |
import google.generativeai as genai | |
import re | |
client = Groq(api_key=os.getenv("GROQ_API_KEY")) | |
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') | |
llm_obj = LLMClient(client,GOOGLE_API_KEY) | |
processor = CodeProcessor(llm_obj) | |
st.title("Code Analysis with LLMs") | |
st.sidebar.title("Input Options") | |
code_input_method = st.sidebar.radio("How would you like to provide your code?", | |
("Upload CSV file", "Upload Code File")) | |
code_dict = {} | |
if code_input_method == "Upload CSV file": | |
uploaded_file = st.sidebar.file_uploader("Upload your CSV/Excel file", type=["csv", "xlsx"]) | |
if uploaded_file is not None: | |
dataframe = pd.read_csv(uploaded_file) | |
code_dict = csv_read_batch_code(dataframe) | |
elif code_input_method == "Upload Code File": | |
uploaded_file = st.sidebar.file_uploader("Upload your code file", type=["py", "txt"]) | |
if uploaded_file is not None: | |
code_text = uploaded_file.read().decode("utf-8") | |
code_lines = [line.strip() for line in code_text.splitlines()] | |
code_lines = [re.sub(r"\s+", " ", line) for line in code_lines] | |
# Join the cleaned lines back if needed as a single string | |
clean_code_text = "\n".join(code_lines) # Combine lines into one string | |
code_dict = {"single_code": clean_code_text} | |
model_choice = st.sidebar.selectbox("Select LLM Model", | |
["llama-3.2-90b-text-preview", "llama-3.2-90b-text-preview", "llama3-8b-8192","llama-3.1-70b-versatile","gemma2-9b-it","gemini-pro"]) | |
if code_dict: | |
unique_key = st.sidebar.selectbox("Select a Key for Analysis", list(code_dict.keys())) | |
if st.sidebar.button("Analyze Code") and unique_key: | |
code_text = code_dict[unique_key] | |
markdown_output = processor.process_code(code_text, model_choice) | |
with st.expander(f"Analysis for {unique_key}"): | |
st.markdown(markdown_output) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
st.download_button( | |
label=f"Download {unique_key} Result as Markdown", | |
data=markdown_output, | |
file_name=f"code_analysis_{unique_key}_{timestamp}.md", | |
mime="text/markdown" | |
) | |
if st.sidebar.button("Batch Predict"): | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
all_markdowns = {} | |
for key, code_text in code_dict.items(): | |
markdown_output = processor.process_code(code_text, model_choice) | |
all_markdowns[key] = markdown_output | |
with st.expander(f"Analysis for {key}"): | |
st.markdown(markdown_output) | |
st.download_button( | |
label=f"Download {key} Result as Markdown", | |
data=markdown_output, | |
file_name=f"code_analysis_{key}_{timestamp}.md", | |
mime="text/markdown" | |
) | |
zip_buffer = io.BytesIO() | |
with zipfile.ZipFile(zip_buffer, "w") as zip_file: | |
for key, markdown_output in all_markdowns.items(): | |
zip_file.writestr(f"code_analysis_{key}_{timestamp}.md", markdown_output) | |
st.download_button( | |
label="Download All as Zip", | |
data=zip_buffer.getvalue(), | |
file_name=f"code_analysis_batch_{timestamp}.zip", | |
mime="application/zip" | |
) | |
else: | |
st.write("Please upload your file to analyze.") | |