Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Semantic-SAM: Segment and Recognize Anything at Any Granularity | |
# Copyright (c) 2023 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Hao Zhang ([email protected]) | |
# -------------------------------------------------------- | |
import torch | |
import numpy as np | |
from torchvision import transforms | |
from task_adapter.utils.visualizer import Visualizer | |
from typing import Tuple | |
from PIL import Image | |
from detectron2.data import MetadataCatalog | |
from detectron2.structures import BitMasks | |
from semantic_sam.utils import box_ops | |
metadata = MetadataCatalog.get('coco_2017_train_panoptic') | |
def interactive_infer_image_box(model, image,all_classes,all_parts, thresh,text_size,hole_scale,island_scale,semantic, refimg=None, reftxt=None, audio_pth=None, video_pth=None): | |
t = [] | |
t.append(transforms.Resize(int(text_size), interpolation=Image.BICUBIC)) | |
transform1 = transforms.Compose(t) | |
image_ori = transform1(image['image']) | |
mask_ori = transform1(image['mask']) | |
width = image_ori.size[0] | |
height = image_ori.size[1] | |
image_ori = np.asarray(image_ori) | |
images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda() | |
all_classes, all_parts=all_classes.strip().strip("\"[]").split(':'),all_parts.strip().strip("\"[]").split(':') | |
data = {"image": images, "height": height, "width": width} | |
mask_ori = np.asarray(mask_ori)[:,:,0:1].copy() | |
mask_ori = torch.from_numpy(mask_ori).permute(2,0,1)[0] | |
flaten_mask = mask_ori.unsqueeze(0) | |
# import ipdb; ipdb.set_trace() | |
points=mask_ori.nonzero().float().to(images.device) | |
if len(points)==0: | |
point_=point=points.new_tensor([[0.5,0.5,0.5,0.5]]) | |
else: | |
mean_point=points.mean(0)[None] | |
box_xyxy = BitMasks(flaten_mask > 0).get_bounding_boxes().tensor | |
h = mask_ori.shape[0] | |
w = mask_ori.shape[1] | |
box_xywh = (box_ops.box_xyxy_to_cxcywh(box_xyxy) / torch.as_tensor([w, h, w, h])).cuda() | |
# point_=points.mean(0)[None] | |
# point=point_.clone() | |
# point[0, 0] = point_[0, 0] / mask_ori.shape[0] | |
# point[0, 1] = point_[0, 1] / mask_ori.shape[1] | |
# point = point[:, [1, 0]] | |
point=box_xywh | |
data['targets'] = [dict()] | |
data['targets'][0]['points']=point | |
data['targets'][0]['pb']=point.new_tensor([1.]) | |
batch_inputs = [data] | |
masks,ious = model.model.evaluate_demo(batch_inputs,all_classes,all_parts, task='demo_box') | |
pred_masks_poses = masks | |
reses=[] | |
ious=ious[0,0] | |
ids=torch.argsort(ious,descending=True) | |
text_res='' | |
try: | |
thresh=float(thresh) | |
except Exception: | |
thresh=0.0 | |
mask_ls=[] | |
ious_res=[] | |
areas=[] | |
for i,(pred_masks_pos,iou) in enumerate(zip(pred_masks_poses[ids],ious[ids])): | |
iou=round(float(iou),2) | |
texts=f'{iou}' | |
mask=(pred_masks_pos>0.0).cpu().numpy() | |
area=mask.sum() | |
conti=False | |
if iou<thresh: | |
conti=True | |
for m in mask_ls: | |
if np.logical_and(mask,m).sum()/np.logical_or(mask,m).sum()>0.95: | |
conti=True | |
break | |
if i == len(pred_masks_poses[ids])-1 and mask_ls==[]: | |
conti=False | |
if conti: | |
continue | |
ious_res.append(iou) | |
mask_ls.append(mask) | |
areas.append(area) | |
mask,_=remove_small_regions(mask,int(hole_scale),mode="holes") | |
mask,_=remove_small_regions(mask,int(island_scale),mode="islands") | |
mask=(mask).astype(np.float) | |
out_txt = texts | |
visual = Visualizer(image_ori, metadata=metadata) | |
color=[0.,0.,1.0] | |
demo = visual.draw_binary_mask(mask, color=color, text=texts) | |
demo = visual.draw_box(box_xyxy[0]) | |
res = demo.get_image() | |
# point_x0=max(0,int(point_[0, 1])-3) | |
# point_x1=min(mask_ori.shape[1],int(point_[0, 1])+3) | |
# point_y0 = max(0, int(point_[0, 0]) - 3) | |
# point_y1 = min(mask_ori.shape[0], int(point_[0, 0]) + 3) | |
# res[point_y0:point_y1,point_x0:point_x1,0]=255 | |
# res[point_y0:point_y1,point_x0:point_x1,1]=0 | |
# res[point_y0:point_y1,point_x0:point_x1,2]=0 | |
reses.append(Image.fromarray(res)) | |
text_res=text_res+';'+out_txt | |
ids=list(torch.argsort(torch.tensor(areas),descending=False)) | |
ids = [int(i) for i in ids] | |
torch.cuda.empty_cache() | |
return reses,[reses[i] for i in ids] | |
def remove_small_regions( | |
mask: np.ndarray, area_thresh: float, mode: str | |
) -> Tuple[np.ndarray, bool]: | |
""" | |
Removes small disconnected regions and holes in a mask. Returns the | |
mask and an indicator of if the mask has been modified. | |
""" | |
import cv2 # type: ignore | |
assert mode in ["holes", "islands"] | |
correct_holes = mode == "holes" | |
working_mask = (correct_holes ^ mask).astype(np.uint8) | |
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) | |
sizes = stats[:, -1][1:] # Row 0 is background label | |
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] | |
if len(small_regions) == 0: | |
return mask, False | |
fill_labels = [0] + small_regions | |
if not correct_holes: | |
fill_labels = [i for i in range(n_labels) if i not in fill_labels] | |
# If every region is below threshold, keep largest | |
if len(fill_labels) == 0: | |
fill_labels = [int(np.argmax(sizes)) + 1] | |
mask = np.isin(regions, fill_labels) | |
return mask, True |