Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import os | |
import threading | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from datetime import datetime | |
from pathlib import Path | |
from typing import List, Optional | |
import datasets | |
import pandas as pd | |
from dotenv import load_dotenv | |
from huggingface_hub import login | |
import gradio as gr | |
from duckduckgo_search import DDGS | |
from scripts.reformulator import prepare_response | |
from scripts.run_agents import ( | |
get_single_file_description, | |
get_zip_description, | |
) | |
from scripts.text_inspector_tool import TextInspectorTool | |
from smolagents.tools import Tool | |
from scripts.text_web_browser import ( | |
ArchiveSearchTool, | |
FinderTool, | |
FindNextTool, | |
PageDownTool, | |
PageUpTool, | |
VisitTool, | |
SimpleTextBrowser, | |
) | |
from scripts.visual_qa import visualizer | |
from tqdm import tqdm | |
from smolagents import ( | |
CodeAgent, | |
HfApiModel, | |
LiteLLMModel, | |
Model, | |
ToolCallingAgent, | |
) | |
from smolagents.agent_types import AgentText, AgentImage, AgentAudio | |
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types | |
AUTHORIZED_IMPORTS = [ | |
"requests", | |
"zipfile", | |
"os", | |
"pandas", | |
"numpy", | |
"sympy", | |
"json", | |
"bs4", | |
"pubchempy", | |
"xml", | |
"yahoo_finance", | |
"Bio", | |
"sklearn", | |
"scipy", | |
"pydub", | |
"io", | |
"PIL", | |
"chess", | |
"PyPDF2", | |
"pptx", | |
"torch", | |
"datetime", | |
"fractions", | |
"csv", | |
] | |
import os | |
# With this updated version: | |
#from huggingface_hub import configure_http_backend | |
#from huggingface_hub.http import httpx_backend # Explicit backend import | |
#configure_http_backend(factory=httpx_backend.factory) # Correct argument [huggingface.co](https://huggingface.co/docs/huggingface_hub/en/guides/http#http-backends) | |
# Set environment variables before other imports | |
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "300" # 5 minute timeout | |
os.environ["HF_HUB_OFFLINE"] = "0" # Disable offline mode | |
load_dotenv(override=True) | |
login(os.getenv("HF_TOKEN")) | |
append_answer_lock = threading.Lock() | |
SET = "validation" | |
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} | |
### LOAD EVALUATION DATASET | |
eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET] | |
eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"}) | |
def preprocess_file_paths(row): | |
if len(row["file_name"]) > 0: | |
row["file_name"] = f"data/gaia/{SET}/" + row["file_name"] | |
return row | |
eval_ds = eval_ds.map(preprocess_file_paths) | |
eval_df = pd.DataFrame(eval_ds) | |
print("Loaded evaluation dataset:") | |
print(eval_df["task"].value_counts()) | |
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" | |
BROWSER_CONFIG = { | |
"viewport_size": 1024 * 5, | |
"downloads_folder": "downloads_folder", | |
"request_kwargs": { | |
"headers": {"User-Agent": user_agent}, | |
"timeout": 300, | |
}, | |
} | |
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) | |
# Custom OpenAI configuration | |
model = LiteLLMModel( | |
"openai/custom-gpt", | |
custom_role_conversions=custom_role_conversions, | |
api_key=os.getenv("OPENAI_API_KEY"), | |
api_base=os.getenv("CUSTOM_OPENAI_API_BASE"), | |
temperature=0.1, | |
frequency_penalty=0.2, | |
messages=[ | |
{ | |
"role": "system", | |
"content": """ALWAYS format code responses with: | |
```py | |
# Your code | |
``` | |
Use markdown for text and strict triple-backtick for code blocks""" | |
} | |
] | |
) | |
text_limit = 20000 | |
ti_tool = TextInspectorTool(model, text_limit) | |
browser = SimpleTextBrowser(**BROWSER_CONFIG) | |
class DuckDuckGoSearchTool(Tool): | |
"""Search tool using DuckDuckGo""" | |
name = "web_search" | |
description = "Search the web using DuckDuckGo (current information)" | |
inputs = { | |
"query": { | |
"type": "string", | |
"description": "Search query terms", | |
"required": True | |
} | |
} | |
output_type = "string" | |
def __init__(self, max_results: int = 5): | |
super().__init__() | |
self.max_results = max_results | |
def forward(self, query: str) -> str: # <-- Correct method name and signature | |
"""Execute DuckDuckGo search""" | |
try: | |
with DDGS(timeout=30) as ddgs: | |
results = list(ddgs.text( | |
keywords=query, | |
max_results=self.max_results, | |
region='wt-wt' | |
)) | |
return "\n\n".join([ | |
f"β’ {res['title']}\n URL: {res['href']}\n {res['body'][:200]}..." | |
for res in results | |
]) | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
WEB_TOOLS = [ | |
DuckDuckGoSearchTool(max_results=5), | |
VisitTool(browser), | |
PageUpTool(browser), | |
PageDownTool(browser), | |
FinderTool(browser), | |
FindNextTool(browser), | |
ArchiveSearchTool(browser), | |
TextInspectorTool(model, text_limit), | |
] | |
from smolagents.parsers import CodeParser | |
import re | |
class RobustCodeParser(CodeParser): | |
def extract_code(self, response: str) -> str: | |
try: | |
return super().extract_code(response) | |
except ValueError: | |
# Fallback pattern matching | |
code_match = re.search(r"```(?:python|py)?\n(.*?)\n```", response, re.DOTALL) | |
if code_match: | |
return code_match.group(1).strip() | |
raise ValueError(f"Invalid code format in response:\n{response}") | |
# Replace in agent creation: | |
# Agent creation in a factory function | |
def create_agent(): | |
return CodeAgent( | |
model=model, | |
tools=[visualizer] + WEB_TOOLS, | |
max_steps=7, # Increased from 5 | |
verbosity_level=3, # Higher debug info | |
additional_authorized_imports=AUTHORIZED_IMPORTS, | |
planning_interval=3, | |
code_block_delimiters=("```py", "```"), # Explicit code formatting [github.com] | |
code_clean_pattern=r"^[\s\S]*?(```py\n[\s\S]*?\n```)", # Improved regex | |
enforce_code_format=True, | |
parser=RobustCodeParser() # Explicitly use RobustCodeParser here! | |
) | |
document_inspection_tool = TextInspectorTool(model, 20000) | |
def stream_to_gradio( | |
agent, | |
task: str, | |
reset_agent_memory: bool = False, | |
additional_args: Optional[dict] = None, | |
): | |
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" | |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): | |
for message in pull_messages_from_step( | |
step_log, | |
): | |
yield message | |
final_answer = step_log # Last log is the run's final_answer | |
final_answer = handle_agent_output_types(final_answer) | |
if isinstance(final_answer, AgentText): | |
yield gr.ChatMessage( | |
role="assistant", | |
content=f"**Final answer:**\n{final_answer.to_string()}\n", | |
) | |
elif isinstance(final_answer, AgentImage): | |
yield gr.ChatMessage( | |
role="assistant", | |
content={"path": final_answer.to_string(), "mime_type": "image/png"}, | |
) | |
elif isinstance(final_answer, AgentAudio): | |
yield gr.ChatMessage( | |
role="assistant", | |
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, | |
) | |
else: | |
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") | |
class GradioUI: | |
"""A one-line interface to launch your agent in Gradio""" | |
def __init__(self, file_upload_folder: str | None = None): | |
self.file_upload_folder = file_upload_folder | |
if self.file_upload_folder is not None: | |
if not os.path.exists(file_upload_folder): | |
os.mkdir(file_upload_folder) | |
def interact_with_agent(self, prompt, messages, session_state): | |
if 'agent' not in session_state: | |
session_state['agent'] = create_agent() | |
messages.append(gr.ChatMessage(role="user", content=prompt)) | |
yield messages | |
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False): | |
messages.append(msg) | |
yield messages | |
yield messages | |
def upload_file( | |
self, | |
file, | |
file_uploads_log, | |
allowed_file_types=[ | |
"application/pdf", | |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document", | |
"text/plain", | |
], | |
): | |
if file is None: | |
return gr.Textbox("No file uploaded", visible=True), file_uploads_log | |
try: | |
mime_type, _ = mimetypes.guess_type(file.name) | |
except Exception as e: | |
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log | |
if mime_type not in allowed_file_types: | |
return gr.Textbox("File type disallowed", visible=True), file_uploads_log | |
original_name = os.path.basename(file.name) | |
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name) | |
type_to_ext = {} | |
for ext, t in mimetypes.types_map.items(): | |
if t not in type_to_ext: | |
type_to_ext[t] = ext | |
sanitized_name = sanitized_name.split(".")[:-1] | |
sanitized_name.append("" + type_to_ext[mime_type]) | |
sanitized_name = "".join(sanitized_name) | |
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) | |
shutil.copy(file.name, file_path) | |
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] | |
def log_user_message(self, text_input, file_uploads_log): | |
return ( | |
text_input | |
+ ( | |
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" | |
if len(file_uploads_log) > 0 | |
else "" | |
), | |
"", | |
) | |
def launch(self, **kwargs): | |
with gr.Blocks(theme="ocean", fill_height=True) as demo: | |
gr.Markdown("""# Open Deep Research - AI Agent Interface | |
Advanced question answering using DuckDuckGo search and custom AI models""") | |
session_state = gr.State({}) | |
stored_messages = gr.State([]) | |
file_uploads_log = gr.State([]) | |
chatbot = gr.Chatbot( | |
label="Research Agent", | |
type="messages", | |
avatar_images=( | |
None, | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", | |
), | |
resizeable=True, | |
scale=1, | |
) | |
if self.file_upload_folder is not None: | |
upload_file = gr.File(label="Upload a file") | |
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) | |
upload_file.change( | |
self.upload_file, | |
[upload_file, file_uploads_log], | |
[upload_status, file_uploads_log], | |
) | |
text_input = gr.Textbox(lines=1, label="Enter your question") | |
text_input.submit( | |
self.log_user_message, | |
[text_input, file_uploads_log], | |
[stored_messages, text_input], | |
).then( | |
self.interact_with_agent, | |
[stored_messages, chatbot, session_state], | |
[chatbot] | |
) | |
demo.launch(debug=True, share=False, **kwargs) | |
if __name__ == "__main__": | |
GradioUI().launch() |