Spaces:
Running
Running
File size: 9,827 Bytes
bd94e77 e8fafc5 a8c2bc7 e8fafc5 a8c2bc7 e8fafc5 bd94e77 f1a5461 cdf219b 19b9289 8ce0f99 bd94e77 6f78f1b 115aca3 8c3c188 6f78f1b bd94e77 8ce0f99 115aca3 1e78a70 bd94e77 19b9289 f1a5461 45bf211 f1a5461 bd94e77 19b9289 bd94e77 8ce0f99 2cc4b35 8ce0f99 bd94e77 19b9289 fa467b8 99978ff 45bf211 99978ff 45bf211 99978ff 45bf211 99978ff 45bf211 99978ff fa467b8 99978ff 9a0003a 69fa971 cdf219b 9192cea fa467b8 1e78a70 69fa971 637d40c cdf219b 115aca3 99978ff 115aca3 99978ff 115aca3 8c3c188 1e78a70 f1a5461 8c3c188 19b9289 1e78a70 fa467b8 1e78a70 637d40c fa467b8 f1a5461 1e78a70 f1a5461 115aca3 f1a5461 1e78a70 115aca3 1e78a70 bd94e77 8ce0f99 1e78a70 6f78f1b cdf219b 6f78f1b ff8ec88 6f78f1b 8c3c188 6f78f1b bd94e77 e8fafc5 1e78a70 8c3c188 1e78a70 115aca3 1e78a70 8c3c188 115aca3 1e78a70 bec46dd 8c3c188 115aca3 bec46dd fa467b8 bec46dd bd94e77 19b9289 e86d760 a8c2bc7 bd94e77 a8c2bc7 bd94e77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
docker build -t denoise:v20250609_1919 .
docker stop denoise_7865 && docker rm denoise_7865
docker run -itd \
--name denoise_7865 \
--restart=always \
--network host \
-e server_port=7865 \
-e hf_token=hf_coRVvzwAzCwGHKRK***********EX \
denoise:v20250609_1919 /bin/bash
"""
import argparse
import json
from functools import lru_cache
import logging
from pathlib import Path
import platform
import shutil
import tempfile
import time
from typing import Tuple
import zipfile
import gradio as gr
from huggingface_hub import snapshot_download
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import log
from project_settings import environment, project_path, log_directory
from toolbox.os.command import Command
from toolbox.torchaudio.models.dfnet.inference_dfnet import InferenceDfNet
from toolbox.torchaudio.models.dfnet2.inference_dfnet2 import InferenceDfNet2
from toolbox.torchaudio.models.dtln.inference_dtln import InferenceDTLN
from toolbox.torchaudio.models.frcrn.inference_frcrn import InferenceFRCRN
from toolbox.torchaudio.models.mpnet.inference_mpnet import InferenceMPNet
log.setup_size_rotating(log_directory=log_directory)
logger = logging.getLogger("main")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--examples_dir",
# default=(project_path / "data").as_posix(),
default=(project_path / "data/examples").as_posix(),
type=str
)
parser.add_argument(
"--models_repo_id",
default="qgyd2021/nx_denoise",
type=str
)
parser.add_argument(
"--trained_model_dir",
default=(project_path / "trained_models").as_posix(),
type=str
)
parser.add_argument(
"--hf_token",
default=environment.get("hf_token"),
type=str,
)
parser.add_argument(
"--server_port",
default=environment.get("server_port", 7860),
type=int
)
args = parser.parse_args()
return args
def shell(cmd: str):
return Command.popen(cmd)
denoise_engines = {
"dtln-256-nx-dns3": {
"infer_cls": InferenceDTLN,
"kwargs": {
"pretrained_model_path_or_zip_file": (project_path / "trained_models/dtln-256-nx-dns3.zip").as_posix()
}
},
"dtln-512-nx-dns3": {
"infer_cls": InferenceDTLN,
"kwargs": {
"pretrained_model_path_or_zip_file": (project_path / "trained_models/dtln-512-nx-dns3.zip").as_posix()
}
},
"dfnet2-nx-dns3": {
"infer_cls": InferenceDfNet2,
"kwargs": {
"pretrained_model_path_or_zip_file": (project_path / "trained_models/dfnet2-nx-dns3.zip").as_posix()
}
},
"frcrn-dns3": {
"infer_cls": InferenceFRCRN,
"kwargs": {
"pretrained_model_path_or_zip_file": (project_path / "trained_models/frcrn-dns3.zip").as_posix()
}
},
"mpnet-nx-speech": {
"infer_cls": InferenceMPNet,
"kwargs": {
"pretrained_model_path_or_zip_file": (project_path / "trained_models/mpnet-nx-speech.zip").as_posix()
}
},
}
@lru_cache(maxsize=1)
def load_denoise_model(infer_cls, **kwargs):
infer_engine = infer_cls(**kwargs)
return infer_engine
def generate_spectrogram(signal: np.ndarray, sample_rate: int = 8000, title: str = "Spectrogram"):
mag = np.abs(librosa.stft(signal))
# mag_db = librosa.amplitude_to_db(mag, ref=np.max)
mag_db = librosa.amplitude_to_db(mag, ref=20)
plt.figure(figsize=(10, 4))
librosa.display.specshow(mag_db, sr=sample_rate)
plt.title(title)
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
plt.savefig(temp_file.name, bbox_inches="tight")
plt.close()
return temp_file.name
def when_click_denoise_button(noisy_audio_file_t = None, noisy_audio_microphone_t = None, engine: str = None):
if noisy_audio_file_t is None and noisy_audio_microphone_t is None:
raise gr.Error(f"audio file and microphone is null.")
if noisy_audio_file_t is not None and noisy_audio_microphone_t is not None:
gr.Warning(f"both audio file and microphone file is provided, audio file taking priority.")
noisy_audio_t: Tuple = noisy_audio_file_t or noisy_audio_microphone_t
sample_rate, signal = noisy_audio_t
audio_duration = signal.shape[-1] // 8000
# Test: 使用 microphone 时,显示采样率是 44100,但 signal 实际是按 8000 的采样率的。
logger.info(f"run denoise; engine: {engine}, sample_rate: {sample_rate}, signal dtype: {signal.dtype}, signal shape: {signal.shape}")
noisy_audio = np.array(signal / (1 << 15), dtype=np.float32)
infer_engine_param = denoise_engines.get(engine)
if infer_engine_param is None:
raise gr.Error(f"invalid denoise engine: {engine}.")
try:
infer_cls = infer_engine_param["infer_cls"]
kwargs = infer_engine_param["kwargs"]
infer_engine = load_denoise_model(infer_cls=infer_cls, **kwargs)
begin = time.time()
enhanced_audio = infer_engine.enhancement_by_ndarray(noisy_audio)
time_cost = time.time() - begin
noisy_mag_db = generate_spectrogram(noisy_audio, title="noisy")
denoise_mag_db = generate_spectrogram(enhanced_audio, title="denoise")
fpr = time_cost / audio_duration
info = {
"time_cost": round(time_cost, 4),
"audio_duration": round(audio_duration, 4),
"fpr": round(fpr, 4)
}
message = json.dumps(info, ensure_ascii=False, indent=4)
enhanced_audio = np.array(enhanced_audio * (1 << 15), dtype=np.int16)
except Exception as e:
raise gr.Error(f"enhancement failed, error type: {type(e)}, error text: {str(e)}.")
enhanced_audio_t = (sample_rate, enhanced_audio)
return enhanced_audio_t, message, noisy_mag_db, denoise_mag_db
def main():
args = get_args()
examples_dir = Path(args.examples_dir)
trained_model_dir = Path(args.trained_model_dir)
# download models
if not trained_model_dir.exists():
trained_model_dir.mkdir(parents=True, exist_ok=True)
_ = snapshot_download(
repo_id=args.models_repo_id,
local_dir=trained_model_dir.as_posix(),
token=args.hf_token,
)
# choices
denoise_engine_choices = list(denoise_engines.keys())
# examples
if not examples_dir.exists():
example_zip_file = trained_model_dir / "examples.zip"
with zipfile.ZipFile(example_zip_file.as_posix(), "r") as f_zip:
out_root = examples_dir
if out_root.exists():
shutil.rmtree(out_root.as_posix())
out_root.mkdir(parents=True, exist_ok=True)
f_zip.extractall(path=out_root)
# examples
examples = list()
for filename in examples_dir.glob("**/*.wav"):
examples.append([
filename.as_posix(),
None,
denoise_engine_choices[0],
])
# ui
with gr.Blocks() as blocks:
gr.Markdown(value="denoise.")
with gr.Tabs():
with gr.TabItem("denoise"):
with gr.Row():
with gr.Column(variant="panel", scale=5):
with gr.Tabs():
with gr.TabItem("file"):
dn_noisy_audio_file = gr.Audio(label="noisy_audio")
with gr.TabItem("microphone"):
dn_noisy_audio_microphone = gr.Audio(sources="microphone", label="noisy_audio")
dn_engine = gr.Dropdown(choices=denoise_engine_choices, value=denoise_engine_choices[0], label="engine")
dn_button = gr.Button(variant="primary")
with gr.Column(variant="panel", scale=5):
with gr.Tabs():
with gr.TabItem("audio"):
dn_enhanced_audio = gr.Audio(label="enhanced_audio")
dn_message = gr.Textbox(lines=1, max_lines=20, label="message")
with gr.TabItem("mag_db"):
dn_noisy_mag_db = gr.Image(label="noisy_mag_db")
dn_denoise_mag_db = gr.Image(label="denoise_mag_db")
dn_button.click(
when_click_denoise_button,
inputs=[dn_noisy_audio_file, dn_noisy_audio_microphone, dn_engine],
outputs=[dn_enhanced_audio, dn_message, dn_noisy_mag_db, dn_denoise_mag_db]
)
gr.Examples(
examples=examples,
inputs=[dn_noisy_audio_file, dn_noisy_audio_microphone, dn_engine],
outputs=[dn_enhanced_audio, dn_message, dn_noisy_mag_db, dn_denoise_mag_db],
fn=when_click_denoise_button,
# cache_examples=True,
# cache_mode="lazy",
)
with gr.TabItem("shell"):
shell_text = gr.Textbox(label="cmd")
shell_button = gr.Button("run")
shell_output = gr.Textbox(label="output")
shell_button.click(
shell,
inputs=[shell_text,],
outputs=[shell_output],
)
# http://127.0.0.1:7865/
# http://10.75.27.247:7865/
blocks.queue().launch(
# share=True,
share=False if platform.system() == "Windows" else False,
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
server_port=args.server_port
)
return
if __name__ == "__main__":
main()
|