Spaces:
Running
Running
File size: 20,858 Bytes
e86d760 8128494 cedfdcf 9de2c38 e86d760 2ebb5f8 e86d760 7f9e32d 7c192b8 e86d760 7f9e32d e86d760 3e667fa e86d760 ccf5554 e86d760 b9f223d e86d760 2ebb5f8 cedfdcf e86d760 b408ac3 35dd947 e86d760 2ebb5f8 cedfdcf e86d760 b408ac3 e86d760 ccf5554 2ebb5f8 e86d760 2ebb5f8 e86d760 ccf5554 2ebb5f8 e86d760 2ebb5f8 e86d760 8128494 e86d760 9d91461 8c9b2a3 9d91461 4425d40 9d91461 4425d40 9d91461 e86d760 8128494 92bf47a 8128494 3332930 8128494 e86d760 cedfdcf 7f9e32d 7b7acb0 7f9e32d 8128494 7f9e32d cedfdcf e86d760 9d91461 e86d760 6fdd812 e86d760 9d91461 e86d760 bd728a1 cedfdcf e86d760 eb60dca 6c34ab4 9d91461 e86d760 10059e6 a0cbcda 10059e6 e86d760 99b7931 e86d760 7f9e32d cedfdcf e86d760 aa9e11e 8128494 cedfdcf 1e6339d e86d760 cedfdcf e86d760 bd728a1 cedfdcf e86d760 bd728a1 cedfdcf e86d760 6c34ab4 8128494 e86d760 bd728a1 cedfdcf e86d760 19f90ec 9d91461 19f90ec dc01163 0598200 cedfdcf dc01163 3332930 dc01163 a0cbcda 19f90ec cedfdcf 19f90ec 8128494 cedfdcf 1e6339d 19f90ec cedfdcf 19f90ec cedfdcf 19f90ec cedfdcf 19f90ec 6c34ab4 8128494 19f90ec cedfdcf 19f90ec eb60dca 0598200 cedfdcf eb60dca dc01163 3332930 dc01163 9d91461 dc01163 9d91461 dc01163 9d91461 dc01163 9d91461 3332930 dc01163 9d91461 dc01163 9d91461 dc01163 e86d760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/kaituoxu/Conv-TasNet/tree/master/src
一般场景:
目标 SI-SNR ≥ 10 dB,适用于电话通信、基础语音助手等。
高要求场景(如医疗助听、语音识别):
需 SI-SNR ≥ 14 dB,并配合 PESQ ≥ 3.0 和 STOI ≥ 0.851812。
DeepFilterNet2 模型在 DNS4 数据集,超过500小时的音频上训练了 100 个 epoch。
https://arxiv.org/abs/2205.05474
"""
import argparse
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
from typing import List
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from toolbox.torch.utils.data.dataset.denoise_jsonl_dataset import DenoiseJsonlDataset
from toolbox.torchaudio.models.conv_tasnet.configuration_conv_tasnet import ConvTasNetConfig
from toolbox.torchaudio.models.conv_tasnet.modeling_conv_tasnet import ConvTasNet, ConvTasNetPretrainedModel
from toolbox.torchaudio.losses.snr import NegativeSISNRLoss
from toolbox.torchaudio.losses.spectral import LSDLoss, MultiResolutionSTFTLoss
from toolbox.torchaudio.losses.perceptual import NegSTOILoss, PesqLoss
from toolbox.torchaudio.metrics.pesq import run_pesq_score
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--max_epochs", default=200, type=int)
parser.add_argument("--batch_size", default=8, type=int)
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
parser.add_argument("--patience", default=5, type=int)
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
parser.add_argument("--seed", default=1234, type=int)
parser.add_argument("--config_file", default="config.yaml", type=str)
args = parser.parse_args()
return args
def logging_config(file_dir: str):
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
file_handler = TimedRotatingFileHandler(
filename=os.path.join(file_dir, "main.log"),
encoding="utf-8",
when="D",
interval=1,
backupCount=7
)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
logger.addHandler(file_handler)
return logger
class CollateFunction(object):
def __init__(self):
pass
def __call__(self, batch: List[dict]):
clean_audios = list()
noisy_audios = list()
for sample in batch:
# noise_wave: torch.Tensor = sample["noise_wave"]
clean_audio: torch.Tensor = sample["speech_wave"]
noisy_audio: torch.Tensor = sample["mix_wave"]
# snr_db: float = sample["snr_db"]
clean_audios.append(clean_audio)
noisy_audios.append(noisy_audio)
clean_audios = torch.stack(clean_audios)
noisy_audios = torch.stack(noisy_audios)
# assert
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
raise AssertionError("nan or inf in clean_audios")
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
raise AssertionError("nan or inf in noisy_audios")
return clean_audios, noisy_audios
collate_fn = CollateFunction()
def main():
args = get_args()
config = ConvTasNetConfig.from_pretrained(
pretrained_model_name_or_path=args.config_file,
)
serialization_dir = Path(args.serialization_dir)
serialization_dir.mkdir(parents=True, exist_ok=True)
logger = logging_config(serialization_dir)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
logger.info(f"set seed: {args.seed}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info(f"GPU available count: {n_gpu}; device: {device}")
# datasets
train_dataset = DenoiseJsonlDataset(
jsonl_file=args.train_dataset,
expected_sample_rate=config.sample_rate,
max_wave_value=32768.0,
min_snr_db=config.min_snr_db,
max_snr_db=config.max_snr_db,
# skip=825000,
)
valid_dataset = DenoiseJsonlDataset(
jsonl_file=args.valid_dataset,
expected_sample_rate=config.sample_rate,
max_wave_value=32768.0,
min_snr_db=config.min_snr_db,
max_snr_db=config.max_snr_db,
)
train_data_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
# shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
prefetch_factor=2,
)
valid_data_loader = DataLoader(
dataset=valid_dataset,
batch_size=args.batch_size,
# shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
prefetch_factor=2,
)
# models
logger.info(f"prepare models. config_file: {args.config_file}")
model = ConvTasNetPretrainedModel(config).to(device)
model.to(device)
model.train()
# optimizer
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
optimizer = torch.optim.AdamW(model.parameters(), config.lr)
# resume training
last_step_idx = -1
last_epoch = -1
for step_idx_str in serialization_dir.glob("steps-*"):
step_idx_str = Path(step_idx_str)
step_idx = step_idx_str.stem.split("-")[1]
step_idx = int(step_idx)
if step_idx > last_step_idx:
last_step_idx = step_idx
if last_step_idx != -1:
logger.info(f"resume from steps-{last_step_idx}.")
model_pt = serialization_dir / f"steps-{last_step_idx}/model.pt"
optimizer_pth = serialization_dir / f"steps-{last_step_idx}/optimizer.pth"
logger.info(f"load state dict for model.")
with open(model_pt.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
model.load_state_dict(state_dict, strict=True)
logger.info(f"load state dict for optimizer.")
with open(optimizer_pth.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
optimizer.load_state_dict(state_dict)
if config.lr_scheduler == "CosineAnnealingLR":
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
last_epoch=last_epoch,
# T_max=10 * config.eval_steps,
# eta_min=0.01 * config.lr,
**config.lr_scheduler_kwargs,
)
elif config.lr_scheduler == "MultiStepLR":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
last_epoch=last_epoch,
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
)
else:
raise AssertionError(f"invalid lr_scheduler: {config.lr_scheduler}")
ae_loss_fn = nn.L1Loss(reduction="mean").to(device)
neg_si_snr_loss_fn = NegativeSISNRLoss(reduction="mean").to(device)
neg_stoi_loss_fn = NegSTOILoss(sample_rate=config.sample_rate, reduction="mean").to(device)
mr_stft_loss_fn = MultiResolutionSTFTLoss(
fft_size_list=[256, 512, 1024],
win_size_list=[120, 240, 480],
hop_size_list=[25, 50, 100],
factor_sc=1.5,
factor_mag=1.0,
reduction="mean"
).to(device)
pesq_loss_fn = PesqLoss(0.5, sample_rate=config.sample_rate).to(device)
# training loop
# state
average_pesq_score = 1000000000
average_loss = 1000000000
average_ae_loss = 1000000000
average_neg_si_snr_loss = 1000000000
average_neg_stoi_loss = 1000000000
model_list = list()
best_epoch_idx = None
best_step_idx = None
best_metric = None
patience_count = 0
step_idx = 0 if last_step_idx == -1 else last_step_idx
logger.info("training")
for epoch_idx in range(max(0, last_epoch+1), args.max_epochs):
# train
model.train()
total_pesq_score = 0.
total_loss = 0.
total_ae_loss = 0.
total_neg_si_snr_loss = 0.
total_neg_stoi_loss = 0.
total_mr_stft_loss = 0.
total_pesq_loss = 0.
total_batches = 0.
progress_bar_train = tqdm(
initial=step_idx,
desc="Training; epoch-{}".format(epoch_idx),
)
for train_batch in train_data_loader:
clean_audios, noisy_audios = train_batch
clean_audios: torch.Tensor = clean_audios.to(device)
noisy_audios: torch.Tensor = noisy_audios.to(device)
denoise_audios = model.forward(noisy_audios)
denoise_audios = torch.squeeze(denoise_audios, dim=1)
if torch.any(torch.isnan(denoise_audios)) or torch.any(torch.isinf(denoise_audios)):
raise AssertionError("nan or inf in denoise_audios")
ae_loss = ae_loss_fn.forward(denoise_audios, clean_audios)
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
neg_stoi_loss = neg_stoi_loss_fn.forward(denoise_audios, clean_audios)
mr_stft_loss = mr_stft_loss_fn.forward(denoise_audios, clean_audios)
pesq_loss = pesq_loss_fn.forward(clean_audios, denoise_audios)
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss + 0.25 * neg_stoi_loss + 0.25 * mr_stft_loss
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
logger.info(f"find nan or inf in loss.")
continue
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
total_pesq_score += pesq_score
total_loss += loss.item()
total_ae_loss += ae_loss.item()
total_neg_si_snr_loss += neg_si_snr_loss.item()
total_neg_stoi_loss += neg_stoi_loss.item()
total_mr_stft_loss += mr_stft_loss.item()
total_pesq_loss += pesq_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_ae_loss = round(total_ae_loss / total_batches, 4)
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
average_neg_stoi_loss = round(total_neg_stoi_loss / total_batches, 4)
average_mr_stft_loss = round(total_mr_stft_loss / total_batches, 4)
average_pesq_loss = round(total_pesq_loss / total_batches, 4)
progress_bar_train.update(1)
progress_bar_train.set_postfix({
"lr": lr_scheduler.get_last_lr()[0],
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"neg_si_snr_loss": average_neg_si_snr_loss,
"neg_stoi_loss": average_neg_stoi_loss,
"mr_stft_loss": average_mr_stft_loss,
"pesq_loss": average_pesq_loss,
})
# evaluation
step_idx += 1
if step_idx % config.eval_steps == 0:
with torch.no_grad():
torch.cuda.empty_cache()
total_pesq_score = 0.
total_loss = 0.
total_ae_loss = 0.
total_neg_si_snr_loss = 0.
total_neg_stoi_loss = 0.
total_mr_stft_loss = 0.
total_pesq_loss = 0.
total_batches = 0.
progress_bar_train.close()
progress_bar_eval = tqdm(
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
)
for eval_batch in valid_data_loader:
clean_audios, noisy_audios = eval_batch
clean_audios = clean_audios.to(device)
noisy_audios = noisy_audios.to(device)
denoise_audios = model.forward(noisy_audios)
denoise_audios = torch.squeeze(denoise_audios, dim=1)
ae_loss = ae_loss_fn.forward(denoise_audios, clean_audios)
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
neg_stoi_loss = neg_stoi_loss_fn.forward(denoise_audios, clean_audios)
mr_stft_loss = mr_stft_loss_fn.forward(denoise_audios, clean_audios)
pesq_loss = pesq_loss_fn.forward(clean_audios, denoise_audios)
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss + 0.25 * neg_stoi_loss + 0.25 * mr_stft_loss
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
logger.info(f"find nan or inf in loss.")
continue
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")
total_pesq_score += pesq_score
total_loss += loss.item()
total_ae_loss += ae_loss.item()
total_neg_si_snr_loss += neg_si_snr_loss.item()
total_neg_stoi_loss += neg_stoi_loss.item()
total_mr_stft_loss += mr_stft_loss.item()
total_pesq_loss += pesq_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_ae_loss = round(total_ae_loss / total_batches, 4)
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
average_neg_stoi_loss = round(total_neg_stoi_loss / total_batches, 4)
average_mr_stft_loss = round(total_mr_stft_loss / total_batches, 4)
average_pesq_loss = round(total_pesq_loss / total_batches, 4)
progress_bar_eval.update(1)
progress_bar_eval.set_postfix({
"lr": lr_scheduler.get_last_lr()[0],
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"neg_si_snr_loss": average_neg_si_snr_loss,
"neg_stoi_loss": average_neg_stoi_loss,
"mr_stft_loss": average_mr_stft_loss,
"pesq_loss": average_pesq_loss,
})
total_pesq_score = 0.
total_loss = 0.
total_ae_loss = 0.
total_neg_si_snr_loss = 0.
total_neg_stoi_loss = 0.
total_mr_stft_loss = 0.
total_pesq_loss = 0.
total_batches = 0.
progress_bar_eval.close()
progress_bar_train = tqdm(
initial=progress_bar_train.n,
postfix=progress_bar_train.postfix,
desc=progress_bar_train.desc,
)
# save path
save_dir = serialization_dir / "steps-{}".format(step_idx)
save_dir.mkdir(parents=True, exist_ok=False)
# save models
model.save_pretrained(save_dir.as_posix())
model_list.append(save_dir)
if len(model_list) >= args.num_serialized_models_to_keep:
model_to_delete: Path = model_list.pop(0)
shutil.rmtree(model_to_delete.as_posix())
# save optim
torch.save(optimizer.state_dict(), (save_dir / "optimizer.pth").as_posix())
# save metric
if best_metric is None:
best_epoch_idx = epoch_idx
best_step_idx = step_idx
best_metric = average_pesq_score
elif average_pesq_score > best_metric:
# great is better.
best_epoch_idx = epoch_idx
best_step_idx = step_idx
best_metric = average_pesq_score
else:
pass
metrics = {
"epoch_idx": epoch_idx,
"best_epoch_idx": best_epoch_idx,
"best_step_idx": best_step_idx,
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"neg_si_snr_loss": average_neg_si_snr_loss,
"neg_stoi_loss": average_neg_stoi_loss,
"mr_stft_loss": average_mr_stft_loss,
"pesq_loss": average_pesq_loss,
}
metrics_filename = save_dir / "metrics_epoch.json"
with open(metrics_filename, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4, ensure_ascii=False)
# save best
best_dir = serialization_dir / "best"
if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
if best_dir.exists():
shutil.rmtree(best_dir)
shutil.copytree(save_dir, best_dir)
# early stop
early_stop_flag = False
if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
patience_count = 0
else:
patience_count += 1
if patience_count >= args.patience:
early_stop_flag = True
# early stop
if early_stop_flag:
break
return
if __name__ == "__main__":
main()
|