File size: 20,858 Bytes
e86d760
 
 
8128494
cedfdcf
 
 
 
 
 
 
 
9de2c38
 
 
e86d760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebb5f8
e86d760
 
 
7f9e32d
7c192b8
e86d760
 
 
 
 
 
 
 
7f9e32d
e86d760
3e667fa
e86d760
 
 
ccf5554
e86d760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f223d
 
 
 
e86d760
 
 
 
 
 
2ebb5f8
 
cedfdcf
e86d760
b408ac3
 
35dd947
e86d760
2ebb5f8
 
cedfdcf
e86d760
b408ac3
 
e86d760
 
 
ccf5554
2ebb5f8
e86d760
 
 
 
 
2ebb5f8
e86d760
 
 
ccf5554
2ebb5f8
e86d760
 
 
 
 
2ebb5f8
e86d760
 
 
 
 
 
 
 
 
 
8128494
e86d760
 
9d91461
8c9b2a3
9d91461
 
 
4425d40
9d91461
 
4425d40
9d91461
 
 
 
e86d760
 
 
 
 
 
 
 
 
 
 
8128494
 
 
92bf47a
8128494
 
 
 
 
 
 
3332930
8128494
 
 
 
e86d760
 
 
cedfdcf
7f9e32d
7b7acb0
7f9e32d
 
8128494
 
7f9e32d
 
cedfdcf
e86d760
 
 
 
 
 
 
 
 
 
 
9d91461
 
e86d760
 
 
6fdd812
 
e86d760
9d91461
e86d760
 
 
 
 
 
 
 
bd728a1
cedfdcf
e86d760
eb60dca
6c34ab4
9d91461
 
e86d760
10059e6
a0cbcda
10059e6
 
e86d760
 
 
 
99b7931
 
 
e86d760
 
 
7f9e32d
cedfdcf
e86d760
aa9e11e
8128494
 
 
cedfdcf
 
1e6339d
 
 
e86d760
 
 
cedfdcf
e86d760
 
 
 
 
 
 
 
 
 
 
bd728a1
cedfdcf
e86d760
 
 
 
 
 
 
bd728a1
cedfdcf
e86d760
6c34ab4
 
8128494
e86d760
 
 
 
 
bd728a1
cedfdcf
e86d760
 
19f90ec
9d91461
 
19f90ec
dc01163
 
 
 
 
 
 
0598200
cedfdcf
dc01163
 
 
 
3332930
dc01163
a0cbcda
 
19f90ec
 
 
 
 
 
 
 
 
 
cedfdcf
19f90ec
 
8128494
 
 
cedfdcf
 
1e6339d
 
 
19f90ec
 
 
cedfdcf
19f90ec
 
 
 
 
 
 
cedfdcf
19f90ec
 
 
 
 
 
 
 
cedfdcf
19f90ec
6c34ab4
 
8128494
19f90ec
 
 
 
 
 
cedfdcf
19f90ec
eb60dca
 
 
 
 
 
0598200
cedfdcf
eb60dca
 
dc01163
 
 
 
 
 
 
 
3332930
dc01163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d91461
 
dc01163
 
 
9d91461
 
dc01163
 
 
 
 
9d91461
 
 
dc01163
 
 
 
 
9d91461
3332930
dc01163
 
 
 
 
 
 
9d91461
dc01163
 
 
 
 
 
9d91461
dc01163
 
 
 
 
 
 
 
 
e86d760
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/kaituoxu/Conv-TasNet/tree/master/src

一般场景:

目标 SI-SNR ≥ 10 dB,适用于电话通信、基础语音助手等。

高要求场景(如医疗助听、语音识别):
需 SI-SNR ≥ 14 dB,并配合 PESQ ≥ 3.0 和 STOI ≥ 0.851812。

DeepFilterNet2 模型在 DNS4 数据集,超过500小时的音频上训练了 100 个 epoch。
https://arxiv.org/abs/2205.05474

"""
import argparse
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
from typing import List

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from toolbox.torch.utils.data.dataset.denoise_jsonl_dataset import DenoiseJsonlDataset
from toolbox.torchaudio.models.conv_tasnet.configuration_conv_tasnet import ConvTasNetConfig
from toolbox.torchaudio.models.conv_tasnet.modeling_conv_tasnet import ConvTasNet, ConvTasNetPretrainedModel
from toolbox.torchaudio.losses.snr import NegativeSISNRLoss
from toolbox.torchaudio.losses.spectral import LSDLoss, MultiResolutionSTFTLoss
from toolbox.torchaudio.losses.perceptual import NegSTOILoss, PesqLoss
from toolbox.torchaudio.metrics.pesq import run_pesq_score


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    parser.add_argument("--max_epochs", default=200, type=int)

    parser.add_argument("--batch_size", default=8, type=int)
    parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
    parser.add_argument("--patience", default=5, type=int)
    parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
    parser.add_argument("--seed", default=1234, type=int)

    parser.add_argument("--config_file", default="config.yaml", type=str)

    args = parser.parse_args()
    return args


def logging_config(file_dir: str):
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.INFO)
    file_handler = TimedRotatingFileHandler(
        filename=os.path.join(file_dir, "main.log"),
        encoding="utf-8",
        when="D",
        interval=1,
        backupCount=7
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger(__name__)
    logger.addHandler(file_handler)

    return logger


class CollateFunction(object):
    def __init__(self):
        pass

    def __call__(self, batch: List[dict]):
        clean_audios = list()
        noisy_audios = list()

        for sample in batch:
            # noise_wave: torch.Tensor = sample["noise_wave"]
            clean_audio: torch.Tensor = sample["speech_wave"]
            noisy_audio: torch.Tensor = sample["mix_wave"]
            # snr_db: float = sample["snr_db"]

            clean_audios.append(clean_audio)
            noisy_audios.append(noisy_audio)

        clean_audios = torch.stack(clean_audios)
        noisy_audios = torch.stack(noisy_audios)

        # assert
        if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
            raise AssertionError("nan or inf in clean_audios")
        if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
            raise AssertionError("nan or inf in noisy_audios")
        return clean_audios, noisy_audios


collate_fn = CollateFunction()


def main():
    args = get_args()

    config = ConvTasNetConfig.from_pretrained(
        pretrained_model_name_or_path=args.config_file,
    )

    serialization_dir = Path(args.serialization_dir)
    serialization_dir.mkdir(parents=True, exist_ok=True)

    logger = logging_config(serialization_dir)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    logger.info(f"set seed: {args.seed}")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info(f"GPU available count: {n_gpu}; device: {device}")

    # datasets
    train_dataset = DenoiseJsonlDataset(
        jsonl_file=args.train_dataset,
        expected_sample_rate=config.sample_rate,
        max_wave_value=32768.0,
        min_snr_db=config.min_snr_db,
        max_snr_db=config.max_snr_db,
        # skip=825000,
    )
    valid_dataset = DenoiseJsonlDataset(
        jsonl_file=args.valid_dataset,
        expected_sample_rate=config.sample_rate,
        max_wave_value=32768.0,
        min_snr_db=config.min_snr_db,
        max_snr_db=config.max_snr_db,
    )
    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_size=args.batch_size,
        # shuffle=True,
        sampler=None,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        prefetch_factor=2,
    )
    valid_data_loader = DataLoader(
        dataset=valid_dataset,
        batch_size=args.batch_size,
        # shuffle=True,
        sampler=None,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        prefetch_factor=2,
    )

    # models
    logger.info(f"prepare models. config_file: {args.config_file}")
    model = ConvTasNetPretrainedModel(config).to(device)
    model.to(device)
    model.train()

    # optimizer
    logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
    optimizer = torch.optim.AdamW(model.parameters(), config.lr)

    # resume training
    last_step_idx = -1
    last_epoch = -1
    for step_idx_str in serialization_dir.glob("steps-*"):
        step_idx_str = Path(step_idx_str)
        step_idx = step_idx_str.stem.split("-")[1]
        step_idx = int(step_idx)
        if step_idx > last_step_idx:
            last_step_idx = step_idx

    if last_step_idx != -1:
        logger.info(f"resume from steps-{last_step_idx}.")
        model_pt = serialization_dir / f"steps-{last_step_idx}/model.pt"
        optimizer_pth = serialization_dir / f"steps-{last_step_idx}/optimizer.pth"

        logger.info(f"load state dict for model.")
        with open(model_pt.as_posix(), "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        model.load_state_dict(state_dict, strict=True)

        logger.info(f"load state dict for optimizer.")
        with open(optimizer_pth.as_posix(), "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        optimizer.load_state_dict(state_dict)

    if config.lr_scheduler == "CosineAnnealingLR":
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer,
            last_epoch=last_epoch,
            # T_max=10 * config.eval_steps,
            # eta_min=0.01 * config.lr,
            **config.lr_scheduler_kwargs,
        )
    elif config.lr_scheduler == "MultiStepLR":
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            last_epoch=last_epoch,
            milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
        )
    else:
        raise AssertionError(f"invalid lr_scheduler: {config.lr_scheduler}")

    ae_loss_fn = nn.L1Loss(reduction="mean").to(device)
    neg_si_snr_loss_fn = NegativeSISNRLoss(reduction="mean").to(device)
    neg_stoi_loss_fn = NegSTOILoss(sample_rate=config.sample_rate, reduction="mean").to(device)
    mr_stft_loss_fn = MultiResolutionSTFTLoss(
        fft_size_list=[256, 512, 1024],
        win_size_list=[120, 240, 480],
        hop_size_list=[25, 50, 100],
        factor_sc=1.5,
        factor_mag=1.0,
        reduction="mean"
    ).to(device)
    pesq_loss_fn = PesqLoss(0.5, sample_rate=config.sample_rate).to(device)

    # training loop

    # state
    average_pesq_score = 1000000000
    average_loss = 1000000000
    average_ae_loss = 1000000000
    average_neg_si_snr_loss = 1000000000
    average_neg_stoi_loss = 1000000000

    model_list = list()
    best_epoch_idx = None
    best_step_idx = None
    best_metric = None
    patience_count = 0

    step_idx = 0 if last_step_idx == -1 else last_step_idx

    logger.info("training")
    for epoch_idx in range(max(0, last_epoch+1), args.max_epochs):
        # train
        model.train()

        total_pesq_score = 0.
        total_loss = 0.
        total_ae_loss = 0.
        total_neg_si_snr_loss = 0.
        total_neg_stoi_loss = 0.
        total_mr_stft_loss = 0.
        total_pesq_loss = 0.
        total_batches = 0.

        progress_bar_train = tqdm(
            initial=step_idx,
            desc="Training; epoch-{}".format(epoch_idx),
        )
        for train_batch in train_data_loader:
            clean_audios, noisy_audios = train_batch
            clean_audios: torch.Tensor = clean_audios.to(device)
            noisy_audios: torch.Tensor = noisy_audios.to(device)

            denoise_audios = model.forward(noisy_audios)
            denoise_audios = torch.squeeze(denoise_audios, dim=1)

            if torch.any(torch.isnan(denoise_audios)) or torch.any(torch.isinf(denoise_audios)):
                raise AssertionError("nan or inf in denoise_audios")

            ae_loss = ae_loss_fn.forward(denoise_audios, clean_audios)
            neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
            neg_stoi_loss = neg_stoi_loss_fn.forward(denoise_audios, clean_audios)
            mr_stft_loss = mr_stft_loss_fn.forward(denoise_audios, clean_audios)
            pesq_loss = pesq_loss_fn.forward(clean_audios, denoise_audios)

            # loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss
            # loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss + 0.25 * neg_stoi_loss + 0.25 * mr_stft_loss
            # loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss
            # loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
            # loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
            loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
            if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
                logger.info(f"find nan or inf in loss.")
                continue

            denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
            clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
            pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()

            total_pesq_score += pesq_score
            total_loss += loss.item()
            total_ae_loss += ae_loss.item()
            total_neg_si_snr_loss += neg_si_snr_loss.item()
            total_neg_stoi_loss += neg_stoi_loss.item()
            total_mr_stft_loss += mr_stft_loss.item()
            total_pesq_loss += pesq_loss.item()
            total_batches += 1

            average_pesq_score = round(total_pesq_score / total_batches, 4)
            average_loss = round(total_loss / total_batches, 4)
            average_ae_loss = round(total_ae_loss / total_batches, 4)
            average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
            average_neg_stoi_loss = round(total_neg_stoi_loss / total_batches, 4)
            average_mr_stft_loss = round(total_mr_stft_loss / total_batches, 4)
            average_pesq_loss = round(total_pesq_loss / total_batches, 4)

            progress_bar_train.update(1)
            progress_bar_train.set_postfix({
                "lr": lr_scheduler.get_last_lr()[0],
                "pesq_score": average_pesq_score,
                "loss": average_loss,
                "ae_loss": average_ae_loss,
                "neg_si_snr_loss": average_neg_si_snr_loss,
                "neg_stoi_loss": average_neg_stoi_loss,
                "mr_stft_loss": average_mr_stft_loss,
                "pesq_loss": average_pesq_loss,
            })

            # evaluation
            step_idx += 1
            if step_idx % config.eval_steps == 0:
                with torch.no_grad():
                    torch.cuda.empty_cache()

                    total_pesq_score = 0.
                    total_loss = 0.
                    total_ae_loss = 0.
                    total_neg_si_snr_loss = 0.
                    total_neg_stoi_loss = 0.
                    total_mr_stft_loss = 0.
                    total_pesq_loss = 0.
                    total_batches = 0.

                    progress_bar_train.close()
                    progress_bar_eval = tqdm(
                        desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
                    )
                    for eval_batch in valid_data_loader:
                        clean_audios, noisy_audios = eval_batch
                        clean_audios = clean_audios.to(device)
                        noisy_audios = noisy_audios.to(device)

                        denoise_audios = model.forward(noisy_audios)
                        denoise_audios = torch.squeeze(denoise_audios, dim=1)

                        ae_loss = ae_loss_fn.forward(denoise_audios, clean_audios)
                        neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios)
                        neg_stoi_loss = neg_stoi_loss_fn.forward(denoise_audios, clean_audios)
                        mr_stft_loss = mr_stft_loss_fn.forward(denoise_audios, clean_audios)
                        pesq_loss = pesq_loss_fn.forward(clean_audios, denoise_audios)

                        # loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss
                        # loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss + 0.25 * neg_stoi_loss + 0.25 * mr_stft_loss
                        # loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss
                        # loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss
                        # loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss
                        loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss
                        if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
                            logger.info(f"find nan or inf in loss.")
                            continue

                        denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy())
                        clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
                        pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb")

                        total_pesq_score += pesq_score
                        total_loss += loss.item()
                        total_ae_loss += ae_loss.item()
                        total_neg_si_snr_loss += neg_si_snr_loss.item()
                        total_neg_stoi_loss += neg_stoi_loss.item()
                        total_mr_stft_loss += mr_stft_loss.item()
                        total_pesq_loss += pesq_loss.item()
                        total_batches += 1

                        average_pesq_score = round(total_pesq_score / total_batches, 4)
                        average_loss = round(total_loss / total_batches, 4)
                        average_ae_loss = round(total_ae_loss / total_batches, 4)
                        average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4)
                        average_neg_stoi_loss = round(total_neg_stoi_loss / total_batches, 4)
                        average_mr_stft_loss = round(total_mr_stft_loss / total_batches, 4)
                        average_pesq_loss = round(total_pesq_loss / total_batches, 4)

                        progress_bar_eval.update(1)
                        progress_bar_eval.set_postfix({
                            "lr": lr_scheduler.get_last_lr()[0],
                            "pesq_score": average_pesq_score,
                            "loss": average_loss,
                            "ae_loss": average_ae_loss,
                            "neg_si_snr_loss": average_neg_si_snr_loss,
                            "neg_stoi_loss": average_neg_stoi_loss,
                            "mr_stft_loss": average_mr_stft_loss,
                            "pesq_loss": average_pesq_loss,
                        })

                    total_pesq_score = 0.
                    total_loss = 0.
                    total_ae_loss = 0.
                    total_neg_si_snr_loss = 0.
                    total_neg_stoi_loss = 0.
                    total_mr_stft_loss = 0.
                    total_pesq_loss = 0.
                    total_batches = 0.

                    progress_bar_eval.close()
                    progress_bar_train = tqdm(
                        initial=progress_bar_train.n,
                        postfix=progress_bar_train.postfix,
                        desc=progress_bar_train.desc,
                    )

                    # save path
                    save_dir = serialization_dir / "steps-{}".format(step_idx)
                    save_dir.mkdir(parents=True, exist_ok=False)

                    # save models
                    model.save_pretrained(save_dir.as_posix())

                    model_list.append(save_dir)
                    if len(model_list) >= args.num_serialized_models_to_keep:
                        model_to_delete: Path = model_list.pop(0)
                        shutil.rmtree(model_to_delete.as_posix())

                    # save optim
                    torch.save(optimizer.state_dict(), (save_dir / "optimizer.pth").as_posix())

                    # save metric
                    if best_metric is None:
                        best_epoch_idx = epoch_idx
                        best_step_idx = step_idx
                        best_metric = average_pesq_score
                    elif average_pesq_score > best_metric:
                        # great is better.
                        best_epoch_idx = epoch_idx
                        best_step_idx = step_idx
                        best_metric = average_pesq_score
                    else:
                        pass

                    metrics = {
                        "epoch_idx": epoch_idx,
                        "best_epoch_idx": best_epoch_idx,
                        "best_step_idx": best_step_idx,
                        "pesq_score": average_pesq_score,
                        "loss": average_loss,
                        "ae_loss": average_ae_loss,
                        "neg_si_snr_loss": average_neg_si_snr_loss,
                        "neg_stoi_loss": average_neg_stoi_loss,
                        "mr_stft_loss": average_mr_stft_loss,
                        "pesq_loss": average_pesq_loss,
                    }
                    metrics_filename = save_dir / "metrics_epoch.json"
                    with open(metrics_filename, "w", encoding="utf-8") as f:
                        json.dump(metrics, f, indent=4, ensure_ascii=False)

                    # save best
                    best_dir = serialization_dir / "best"
                    if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
                        if best_dir.exists():
                            shutil.rmtree(best_dir)
                        shutil.copytree(save_dir, best_dir)

                    # early stop
                    early_stop_flag = False
                    if best_epoch_idx == epoch_idx and best_step_idx == step_idx:
                        patience_count = 0
                    else:
                        patience_count += 1
                    if patience_count >= args.patience:
                        early_stop_flag = True

                    # early stop
                    if early_stop_flag:
                        break

    return


if __name__ == "__main__":
    main()