Spaces:
Running
Running
update
Browse files
examples/conv_tasnet/run.sh
CHANGED
@@ -71,9 +71,8 @@ file_dir="${work_dir}/${file_folder_name}"
|
|
71 |
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
72 |
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
valid_dataset="${file_dir}/valid.xlsx"
|
77 |
|
78 |
$verbose && echo "system_version: ${system_version}"
|
79 |
$verbose && echo "file_folder_name: ${file_folder_name}"
|
|
|
71 |
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
72 |
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
73 |
|
74 |
+
train_dataset="${file_dir}/train.jsonl"
|
75 |
+
valid_dataset="${file_dir}/valid.jsonl"
|
|
|
76 |
|
77 |
$verbose && echo "system_version: ${system_version}"
|
78 |
$verbose && echo "file_folder_name: ${file_folder_name}"
|
examples/conv_tasnet/step_2_train_model.py
CHANGED
@@ -25,7 +25,7 @@ from torch.nn import functional as F
|
|
25 |
from torch.utils.data.dataloader import DataLoader
|
26 |
from tqdm import tqdm
|
27 |
|
28 |
-
from toolbox.torch.utils.data.dataset.
|
29 |
from toolbox.torchaudio.models.conv_tasnet.configuration_conv_tasnet import ConvTasNetConfig
|
30 |
from toolbox.torchaudio.models.conv_tasnet.modeling_conv_tasnet import ConvTasNet, ConvTasNetPretrainedModel
|
31 |
from toolbox.torchaudio.losses.snr import NegativeSISNRLoss
|
@@ -125,37 +125,37 @@ def main():
|
|
125 |
logger.info(f"GPU available count: {n_gpu}; device: {device}")
|
126 |
|
127 |
# datasets
|
128 |
-
train_dataset =
|
129 |
-
|
130 |
expected_sample_rate=8000,
|
131 |
max_wave_value=32768.0,
|
132 |
)
|
133 |
-
valid_dataset =
|
134 |
-
|
135 |
expected_sample_rate=8000,
|
136 |
max_wave_value=32768.0,
|
137 |
)
|
138 |
train_data_loader = DataLoader(
|
139 |
dataset=train_dataset,
|
140 |
batch_size=config.batch_size,
|
141 |
-
shuffle=True,
|
142 |
sampler=None,
|
143 |
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
144 |
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
145 |
collate_fn=collate_fn,
|
146 |
pin_memory=False,
|
147 |
-
prefetch_factor=
|
148 |
)
|
149 |
valid_data_loader = DataLoader(
|
150 |
dataset=valid_dataset,
|
151 |
batch_size=config.batch_size,
|
152 |
-
shuffle=True,
|
153 |
sampler=None,
|
154 |
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
155 |
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
156 |
collate_fn=collate_fn,
|
157 |
pin_memory=False,
|
158 |
-
prefetch_factor=
|
159 |
)
|
160 |
|
161 |
# models
|
|
|
25 |
from torch.utils.data.dataloader import DataLoader
|
26 |
from tqdm import tqdm
|
27 |
|
28 |
+
from toolbox.torch.utils.data.dataset.denoise_jsonl_dataset import DenoiseJsonlDataset
|
29 |
from toolbox.torchaudio.models.conv_tasnet.configuration_conv_tasnet import ConvTasNetConfig
|
30 |
from toolbox.torchaudio.models.conv_tasnet.modeling_conv_tasnet import ConvTasNet, ConvTasNetPretrainedModel
|
31 |
from toolbox.torchaudio.losses.snr import NegativeSISNRLoss
|
|
|
125 |
logger.info(f"GPU available count: {n_gpu}; device: {device}")
|
126 |
|
127 |
# datasets
|
128 |
+
train_dataset = DenoiseJsonlDataset(
|
129 |
+
jsonl_file=args.train_dataset,
|
130 |
expected_sample_rate=8000,
|
131 |
max_wave_value=32768.0,
|
132 |
)
|
133 |
+
valid_dataset = DenoiseJsonlDataset(
|
134 |
+
jsonl_file=args.valid_dataset,
|
135 |
expected_sample_rate=8000,
|
136 |
max_wave_value=32768.0,
|
137 |
)
|
138 |
train_data_loader = DataLoader(
|
139 |
dataset=train_dataset,
|
140 |
batch_size=config.batch_size,
|
141 |
+
# shuffle=True,
|
142 |
sampler=None,
|
143 |
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
144 |
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
145 |
collate_fn=collate_fn,
|
146 |
pin_memory=False,
|
147 |
+
prefetch_factor=2,
|
148 |
)
|
149 |
valid_data_loader = DataLoader(
|
150 |
dataset=valid_dataset,
|
151 |
batch_size=config.batch_size,
|
152 |
+
# shuffle=True,
|
153 |
sampler=None,
|
154 |
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
155 |
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
156 |
collate_fn=collate_fn,
|
157 |
pin_memory=False,
|
158 |
+
prefetch_factor=2,
|
159 |
)
|
160 |
|
161 |
# models
|
toolbox/torch/utils/data/dataset/denoise_jsonl_dataset.py
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
import json
|
4 |
import os
|
|
|
|
|
5 |
|
6 |
import librosa
|
7 |
import numpy as np
|
@@ -9,28 +11,54 @@ import pandas as pd
|
|
9 |
from scipy.io import wavfile
|
10 |
import torch
|
11 |
import torchaudio
|
12 |
-
from torch.utils.data import Dataset
|
13 |
from tqdm import tqdm
|
14 |
|
15 |
|
16 |
-
class DenoiseJsonlDataset(
|
17 |
def __init__(self,
|
18 |
jsonl_file: str,
|
19 |
expected_sample_rate: int,
|
20 |
resample: bool = False,
|
21 |
max_wave_value: float = 1.0,
|
|
|
22 |
):
|
23 |
self.jsonl_file = jsonl_file
|
24 |
self.expected_sample_rate = expected_sample_rate
|
25 |
self.resample = resample
|
26 |
self.max_wave_value = max_wave_value
|
27 |
|
28 |
-
self.
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
for row in f:
|
35 |
row = json.loads(row)
|
36 |
noise_filename = row["noise_filename"]
|
@@ -58,11 +86,10 @@ class DenoiseJsonlDataset(Dataset):
|
|
58 |
|
59 |
"snr_db": snr_db,
|
60 |
}
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
def
|
65 |
-
sample = self.samples[index]
|
66 |
noise_filename = sample["noise_filename"]
|
67 |
noise_offset = sample["noise_offset"]
|
68 |
noise_duration = sample["noise_duration"]
|
@@ -92,9 +119,6 @@ class DenoiseJsonlDataset(Dataset):
|
|
92 |
}
|
93 |
return result
|
94 |
|
95 |
-
def __len__(self):
|
96 |
-
return len(self.samples)
|
97 |
-
|
98 |
def filename_to_waveform(self, filename: str, offset: float, duration: float):
|
99 |
try:
|
100 |
waveform, sample_rate = librosa.load(
|
@@ -129,5 +153,5 @@ class DenoiseJsonlDataset(Dataset):
|
|
129 |
return noisy_signal, noise_adjusted
|
130 |
|
131 |
|
132 |
-
if __name__ ==
|
133 |
pass
|
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
import json
|
4 |
import os
|
5 |
+
import random
|
6 |
+
from typing import List
|
7 |
|
8 |
import librosa
|
9 |
import numpy as np
|
|
|
11 |
from scipy.io import wavfile
|
12 |
import torch
|
13 |
import torchaudio
|
14 |
+
from torch.utils.data import Dataset, IterableDataset
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
|
18 |
+
class DenoiseJsonlDataset(IterableDataset):
|
19 |
def __init__(self,
|
20 |
jsonl_file: str,
|
21 |
expected_sample_rate: int,
|
22 |
resample: bool = False,
|
23 |
max_wave_value: float = 1.0,
|
24 |
+
buffer_size: int = 1000,
|
25 |
):
|
26 |
self.jsonl_file = jsonl_file
|
27 |
self.expected_sample_rate = expected_sample_rate
|
28 |
self.resample = resample
|
29 |
self.max_wave_value = max_wave_value
|
30 |
|
31 |
+
self.buffer_size = buffer_size
|
32 |
+
self.buffer_samples: List[dict] = list()
|
33 |
|
34 |
+
def __iter__(self):
|
35 |
+
iterable_source = self.iterable_source()
|
36 |
+
|
37 |
+
# 初始填充缓冲区
|
38 |
+
try:
|
39 |
+
for _ in range(self.buffer_size):
|
40 |
+
self.buffer_samples.append(next(iterable_source))
|
41 |
+
except StopIteration:
|
42 |
+
pass
|
43 |
+
|
44 |
+
# 动态替换逻辑
|
45 |
+
while True:
|
46 |
+
try:
|
47 |
+
item = next(iterable_source)
|
48 |
+
# 随机替换缓冲区元素
|
49 |
+
replace_idx = random.randint(0, len(self.buffer_samples) - 1)
|
50 |
+
yield self.buffer_samples[replace_idx]
|
51 |
+
self.buffer_samples[replace_idx] = item
|
52 |
+
except StopIteration:
|
53 |
+
break
|
54 |
+
|
55 |
+
# 清空剩余元素
|
56 |
+
random.shuffle(self.buffer_samples)
|
57 |
+
for sample in self.buffer_samples:
|
58 |
+
yield sample
|
59 |
+
|
60 |
+
def iterable_source(self):
|
61 |
+
with open(self.jsonl_file, "r", encoding="utf-8") as f:
|
62 |
for row in f:
|
63 |
row = json.loads(row)
|
64 |
noise_filename = row["noise_filename"]
|
|
|
86 |
|
87 |
"snr_db": snr_db,
|
88 |
}
|
89 |
+
sample = self.convert_sample(row)
|
90 |
+
yield sample
|
91 |
|
92 |
+
def convert_sample(self, sample: dict):
|
|
|
93 |
noise_filename = sample["noise_filename"]
|
94 |
noise_offset = sample["noise_offset"]
|
95 |
noise_duration = sample["noise_duration"]
|
|
|
119 |
}
|
120 |
return result
|
121 |
|
|
|
|
|
|
|
122 |
def filename_to_waveform(self, filename: str, offset: float, duration: float):
|
123 |
try:
|
124 |
waveform, sample_rate = librosa.load(
|
|
|
153 |
return noisy_signal, noise_adjusted
|
154 |
|
155 |
|
156 |
+
if __name__ == "__main__":
|
157 |
pass
|