Spaces:
Running
Running
File size: 9,809 Bytes
c5cffc6 f74ae8e 8ed9309 f74ae8e 1e78a70 c5cffc6 f74ae8e 8ed9309 f74ae8e f69c753 f74ae8e 20d2f3e f74ae8e a88ebd1 f74ae8e c5cffc6 f74ae8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS/blob/main/denoiser/generator.py
https://huggingface.co/spaces/JacobLinCool/MP-SENet
https://arxiv.org/abs/2305.13686
https://github.com/yxlu-0102/MP-SENet
应该是不支持流式改造的。
"""
import os
from typing import Optional, Union
from pesq import pesq
from joblib import Parallel, delayed
import numpy as np
import torch
import torch.nn as nn
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.models.mpnet.conformer import ConformerBlock
from toolbox.torchaudio.models.mpnet.transformers import TransformerBlock
from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig
from toolbox.torchaudio.models.mpnet.utils import LearnableSigmoid2d
class SPConvTranspose2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, r=1):
super(SPConvTranspose2d, self).__init__()
self.pad1 = nn.ConstantPad2d((1, 1, 0, 0), value=0.)
self.out_channels = out_channels
self.conv = nn.Conv2d(in_channels, out_channels * r, kernel_size=kernel_size, stride=(1, 1))
self.r = r
def forward(self, x):
x = self.pad1(x)
out = self.conv(x)
batch_size, nchannels, H, W = out.shape
out = out.view((batch_size, self.r, nchannels // self.r, H, W))
out = out.permute(0, 2, 3, 4, 1)
out = out.contiguous().view((batch_size, nchannels // self.r, H, -1))
return out
class DenseBlock(nn.Module):
def __init__(self, h, kernel_size=(2, 3), depth=4):
super(DenseBlock, self).__init__()
self.h = h
self.depth = depth
self.dense_block = nn.ModuleList([])
for i in range(depth):
dilation = 2 ** i
pad_length = dilation
dense_conv = nn.Sequential(
nn.ConstantPad2d((1, 1, pad_length, 0), value=0.),
nn.Conv2d(h.dense_channel*(i+1), h.dense_channel, kernel_size, dilation=(dilation, 1)),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel)
)
self.dense_block.append(dense_conv)
def forward(self, x):
skip = x
for i in range(self.depth):
x = self.dense_block[i](skip)
skip = torch.cat([x, skip], dim=1)
return x
class DenseEncoder(nn.Module):
def __init__(self, h, in_channel):
super(DenseEncoder, self).__init__()
self.h = h
self.dense_conv_1 = nn.Sequential(
nn.Conv2d(in_channel, h.dense_channel, (1, 1)),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel))
self.dense_block = DenseBlock(h, depth=4)
self.dense_conv_2 = nn.Sequential(
nn.Conv2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2), padding=(0, 1)),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel))
def forward(self, x):
x = self.dense_conv_1(x) # [b, 64, T, F]
x = self.dense_block(x) # [b, 64, T, F]
x = self.dense_conv_2(x) # [b, 64, T, F//2]
return x
class MaskDecoder(nn.Module):
def __init__(self, h, out_channel=1):
super(MaskDecoder, self).__init__()
self.dense_block = DenseBlock(h, depth=4)
self.mask_conv = nn.Sequential(
SPConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), 2),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel),
nn.Conv2d(h.dense_channel, out_channel, (1, 2))
)
self.lsigmoid = LearnableSigmoid2d(h.n_fft//2+1, beta=h.beta)
def forward(self, x):
x = self.dense_block(x)
x = self.mask_conv(x)
x = x.permute(0, 3, 2, 1).squeeze(-1) # [B, F, T]
x = self.lsigmoid(x)
return x
class PhaseDecoder(nn.Module):
def __init__(self, h, out_channel=1):
super(PhaseDecoder, self).__init__()
self.dense_block = DenseBlock(h, depth=4)
self.phase_conv = nn.Sequential(
SPConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), 2),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel)
)
self.phase_conv_r = nn.Conv2d(h.dense_channel, out_channel, (1, 2))
self.phase_conv_i = nn.Conv2d(h.dense_channel, out_channel, (1, 2))
def forward(self, x):
x = self.dense_block(x)
x = self.phase_conv(x)
x_r = self.phase_conv_r(x)
x_i = self.phase_conv_i(x)
x = torch.atan2(x_i, x_r)
x = x.permute(0, 3, 2, 1).squeeze(-1) # [B, F, T]
return x
class TSTransformerBlock(nn.Module):
def __init__(self, h):
super(TSTransformerBlock, self).__init__()
self.h = h
self.time_transformer = TransformerBlock(d_model=h.dense_channel, n_heads=4)
self.freq_transformer = TransformerBlock(d_model=h.dense_channel, n_heads=4)
def forward(self, x):
b, c, t, f = x.size()
x = x.permute(0, 3, 2, 1).contiguous().view(b*f, t, c)
x = self.time_transformer(x) + x
x = x.view(b, f, t, c).permute(0, 2, 1, 3).contiguous().view(b*t, f, c)
x = self.freq_transformer(x) + x
x = x.view(b, t, f, c).permute(0, 3, 1, 2)
return x
class MPNet(nn.Module):
def __init__(self, config: MPNetConfig, num_tsblocks=4):
super(MPNet, self).__init__()
self.num_tscblocks = num_tsblocks
self.dense_encoder = DenseEncoder(config, in_channel=2)
self.TSTransformer = nn.ModuleList([])
for i in range(num_tsblocks):
self.TSTransformer.append(TSTransformerBlock(config))
self.mask_decoder = MaskDecoder(config, out_channel=1)
self.phase_decoder = PhaseDecoder(config, out_channel=1)
def forward(self, noisy_amp, noisy_pha): # [B, F, T]
x = torch.stack((noisy_amp, noisy_pha), dim=-1).permute(0, 3, 2, 1) # [B, 2, T, F]
x = self.dense_encoder(x)
for i in range(self.num_tscblocks):
x = self.TSTransformer[i](x)
denoised_amp = noisy_amp * self.mask_decoder(x)
denoised_pha = self.phase_decoder(x)
denoised_com = torch.stack(
tensors=(
denoised_amp * torch.cos(denoised_pha),
denoised_amp * torch.sin(denoised_pha)
),
dim=-1
)
return denoised_amp, denoised_pha, denoised_com
MODEL_FILE = "generator.pt"
class MPNetPretrainedModel(MPNet):
def __init__(self,
config: MPNetConfig,
):
super(MPNetPretrainedModel, self).__init__(
config=config,
)
self.config = config
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
config = MPNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
model = cls(config)
if os.path.isdir(pretrained_model_name_or_path):
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
else:
ckpt_file = pretrained_model_name_or_path
with open(ckpt_file, "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
model.load_state_dict(state_dict, strict=True)
return model
def save_pretrained(self,
save_directory: Union[str, os.PathLike],
state_dict: Optional[dict] = None,
):
model = self
if state_dict is None:
state_dict = model.state_dict()
os.makedirs(save_directory, exist_ok=True)
# save state dict
model_file = os.path.join(save_directory, MODEL_FILE)
torch.save(state_dict, model_file)
# save config
config_file = os.path.join(save_directory, CONFIG_FILE)
self.config.to_yaml_file(config_file)
return save_directory
def phase_losses(phase_r, phase_g):
ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g))
gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1)))
iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2)))
return ip_loss, gd_loss, iaf_loss
def anti_wrapping_function(x):
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi)
# def pesq_score(utts_r, utts_g, h):
#
# pesq_score = Parallel(n_jobs=30)(delayed(eval_pesq)(
# utts_r[i].squeeze().cpu().numpy(),
# utts_g[i].squeeze().cpu().numpy(),
# h.sample_rate, )
# for i in range(len(utts_r)))
# pesq_score = np.mean(pesq_score)
#
# return pesq_score
#
#
# def eval_pesq(clean_utt, esti_utt, sr):
# try:
# mode = "nb" if sr == 8000 else "wb"
# pesq_score = pesq(sr, clean_utt, esti_utt, mode=mode)
# except:
# pesq_score = -1
#
# return pesq_score
def main():
import torchaudio
config = MPNetConfig()
model = MPNet(config=config)
transformer = torchaudio.transforms.Spectrogram(
n_fft=config.n_fft,
win_length=config.win_size,
hop_length=config.hop_size,
window_fn=torch.hamming_window,
)
inputs = torch.randn(size=(1, 32000), dtype=torch.float32)
spec = transformer.forward(inputs)
print(spec.shape)
denoised_amp, denoised_pha, denoised_com = model.forward(spec, spec)
print(denoised_amp.shape)
print(denoised_pha.shape)
print(denoised_com.shape)
return
if __name__ == '__main__':
main()
|