File size: 9,809 Bytes
c5cffc6
 
 
 
f74ae8e
8ed9309
 
f74ae8e
 
 
1e78a70
 
c5cffc6
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
8ed9309
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f69c753
f74ae8e
 
 
 
 
 
 
 
 
20d2f3e
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88ebd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cffc6
 
 
f74ae8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS/blob/main/denoiser/generator.py

https://huggingface.co/spaces/JacobLinCool/MP-SENet

https://arxiv.org/abs/2305.13686
https://github.com/yxlu-0102/MP-SENet

应该是不支持流式改造的。

"""
import os
from typing import Optional, Union

from pesq import pesq
from joblib import Parallel, delayed
import numpy as np
import torch
import torch.nn as nn

from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.models.mpnet.conformer import ConformerBlock
from toolbox.torchaudio.models.mpnet.transformers import TransformerBlock
from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig
from toolbox.torchaudio.models.mpnet.utils import LearnableSigmoid2d


class SPConvTranspose2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, r=1):
        super(SPConvTranspose2d, self).__init__()
        self.pad1 = nn.ConstantPad2d((1, 1, 0, 0), value=0.)
        self.out_channels = out_channels
        self.conv = nn.Conv2d(in_channels, out_channels * r, kernel_size=kernel_size, stride=(1, 1))
        self.r = r

    def forward(self, x):
        x = self.pad1(x)
        out = self.conv(x)
        batch_size, nchannels, H, W = out.shape
        out = out.view((batch_size, self.r, nchannels // self.r, H, W))
        out = out.permute(0, 2, 3, 4, 1)
        out = out.contiguous().view((batch_size, nchannels // self.r, H, -1))
        return out


class DenseBlock(nn.Module):
    def __init__(self, h, kernel_size=(2, 3), depth=4):
        super(DenseBlock, self).__init__()
        self.h = h
        self.depth = depth
        self.dense_block = nn.ModuleList([])
        for i in range(depth):
            dilation = 2 ** i
            pad_length = dilation
            dense_conv = nn.Sequential(
                nn.ConstantPad2d((1, 1, pad_length, 0), value=0.),
                nn.Conv2d(h.dense_channel*(i+1), h.dense_channel, kernel_size, dilation=(dilation, 1)),
                nn.InstanceNorm2d(h.dense_channel, affine=True),
                nn.PReLU(h.dense_channel)
            )
            self.dense_block.append(dense_conv)

    def forward(self, x):
        skip = x
        for i in range(self.depth):
            x = self.dense_block[i](skip)
            skip = torch.cat([x, skip], dim=1)
        return x


class DenseEncoder(nn.Module):
    def __init__(self, h, in_channel):
        super(DenseEncoder, self).__init__()
        self.h = h
        self.dense_conv_1 = nn.Sequential(
            nn.Conv2d(in_channel, h.dense_channel, (1, 1)),
            nn.InstanceNorm2d(h.dense_channel, affine=True),
            nn.PReLU(h.dense_channel))

        self.dense_block = DenseBlock(h, depth=4)

        self.dense_conv_2 = nn.Sequential(
            nn.Conv2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2), padding=(0, 1)),
            nn.InstanceNorm2d(h.dense_channel, affine=True),
            nn.PReLU(h.dense_channel))

    def forward(self, x):
        x = self.dense_conv_1(x)  # [b, 64, T, F]
        x = self.dense_block(x)   # [b, 64, T, F]
        x = self.dense_conv_2(x)  # [b, 64, T, F//2]
        return x


class MaskDecoder(nn.Module):
    def __init__(self, h, out_channel=1):
        super(MaskDecoder, self).__init__()
        self.dense_block = DenseBlock(h, depth=4)
        self.mask_conv = nn.Sequential(
            SPConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), 2),
            nn.InstanceNorm2d(h.dense_channel, affine=True),
            nn.PReLU(h.dense_channel),
            nn.Conv2d(h.dense_channel, out_channel, (1, 2))
        )
        self.lsigmoid = LearnableSigmoid2d(h.n_fft//2+1, beta=h.beta)

    def forward(self, x):
        x = self.dense_block(x)
        x = self.mask_conv(x)
        x = x.permute(0, 3, 2, 1).squeeze(-1) # [B, F, T]
        x = self.lsigmoid(x)
        return x


class PhaseDecoder(nn.Module):
    def __init__(self, h, out_channel=1):
        super(PhaseDecoder, self).__init__()
        self.dense_block = DenseBlock(h, depth=4)
        self.phase_conv = nn.Sequential(
            SPConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), 2),
            nn.InstanceNorm2d(h.dense_channel, affine=True),
            nn.PReLU(h.dense_channel)
        )
        self.phase_conv_r = nn.Conv2d(h.dense_channel, out_channel, (1, 2))
        self.phase_conv_i = nn.Conv2d(h.dense_channel, out_channel, (1, 2))

    def forward(self, x):
        x = self.dense_block(x)
        x = self.phase_conv(x)
        x_r = self.phase_conv_r(x)
        x_i = self.phase_conv_i(x)
        x = torch.atan2(x_i, x_r)
        x = x.permute(0, 3, 2, 1).squeeze(-1)  # [B, F, T]
        return x


class TSTransformerBlock(nn.Module):
    def __init__(self, h):
        super(TSTransformerBlock, self).__init__()
        self.h = h
        self.time_transformer = TransformerBlock(d_model=h.dense_channel, n_heads=4)
        self.freq_transformer = TransformerBlock(d_model=h.dense_channel, n_heads=4)

    def forward(self, x):
        b, c, t, f = x.size()
        x = x.permute(0, 3, 2, 1).contiguous().view(b*f, t, c)
        x = self.time_transformer(x) + x
        x = x.view(b, f, t, c).permute(0, 2, 1, 3).contiguous().view(b*t, f, c)
        x = self.freq_transformer(x) + x
        x = x.view(b, t, f, c).permute(0, 3, 1, 2)
        return x


class MPNet(nn.Module):
    def __init__(self, config: MPNetConfig, num_tsblocks=4):
        super(MPNet, self).__init__()
        self.num_tscblocks = num_tsblocks
        self.dense_encoder = DenseEncoder(config, in_channel=2)

        self.TSTransformer = nn.ModuleList([])
        for i in range(num_tsblocks):
            self.TSTransformer.append(TSTransformerBlock(config))

        self.mask_decoder = MaskDecoder(config, out_channel=1)
        self.phase_decoder = PhaseDecoder(config, out_channel=1)

    def forward(self, noisy_amp, noisy_pha):  # [B, F, T]

        x = torch.stack((noisy_amp, noisy_pha), dim=-1).permute(0, 3, 2, 1)  # [B, 2, T, F]
        x = self.dense_encoder(x)

        for i in range(self.num_tscblocks):
            x = self.TSTransformer[i](x)

        denoised_amp = noisy_amp * self.mask_decoder(x)
        denoised_pha = self.phase_decoder(x)
        denoised_com = torch.stack(
            tensors=(
                denoised_amp * torch.cos(denoised_pha),
                denoised_amp * torch.sin(denoised_pha)
            ),
            dim=-1
        )

        return denoised_amp, denoised_pha, denoised_com


MODEL_FILE = "generator.pt"


class MPNetPretrainedModel(MPNet):
    def __init__(self,
                 config: MPNetConfig,
                 ):
        super(MPNetPretrainedModel, self).__init__(
            config=config,
        )
        self.config = config

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        config = MPNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        model = cls(config)

        if os.path.isdir(pretrained_model_name_or_path):
            ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
        else:
            ckpt_file = pretrained_model_name_or_path

        with open(ckpt_file, "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        model.load_state_dict(state_dict, strict=True)
        return model

    def save_pretrained(self,
                        save_directory: Union[str, os.PathLike],
                        state_dict: Optional[dict] = None,
                        ):

        model = self

        if state_dict is None:
            state_dict = model.state_dict()

        os.makedirs(save_directory, exist_ok=True)

        # save state dict
        model_file = os.path.join(save_directory, MODEL_FILE)
        torch.save(state_dict, model_file)

        # save config
        config_file = os.path.join(save_directory, CONFIG_FILE)
        self.config.to_yaml_file(config_file)
        return save_directory


def phase_losses(phase_r, phase_g):

    ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g))
    gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1)))
    iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2)))

    return ip_loss, gd_loss, iaf_loss


def anti_wrapping_function(x):

    return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi)


# def pesq_score(utts_r, utts_g, h):
#
#     pesq_score = Parallel(n_jobs=30)(delayed(eval_pesq)(
#                             utts_r[i].squeeze().cpu().numpy(),
#                             utts_g[i].squeeze().cpu().numpy(),
#                             h.sample_rate, )
#                           for i in range(len(utts_r)))
#     pesq_score = np.mean(pesq_score)
#
#     return pesq_score
#
#
# def eval_pesq(clean_utt, esti_utt, sr):
#     try:
#         mode = "nb" if sr == 8000 else "wb"
#         pesq_score = pesq(sr, clean_utt, esti_utt, mode=mode)
#     except:
#         pesq_score = -1
#
#     return pesq_score


def main():
    import torchaudio

    config = MPNetConfig()
    model = MPNet(config=config)

    transformer = torchaudio.transforms.Spectrogram(
        n_fft=config.n_fft,
        win_length=config.win_size,
        hop_length=config.hop_size,
        window_fn=torch.hamming_window,
    )

    inputs = torch.randn(size=(1, 32000), dtype=torch.float32)
    spec = transformer.forward(inputs)
    print(spec.shape)

    denoised_amp, denoised_pha, denoised_com = model.forward(spec, spec)
    print(denoised_amp.shape)
    print(denoised_pha.shape)
    print(denoised_com.shape)

    return


if __name__ == '__main__':
    main()