nx_denoise / examples /clean_unet_aishell /step_2_train_model.py
HoneyTian's picture
update
294430e
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/NVIDIA/CleanUNet/blob/main/train.py
https://github.com/NVIDIA/CleanUNet/blob/main/configs/DNS-large-full.json
"""
import argparse
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
from typing import List
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
from toolbox.torchaudio.models.clean_unet.configuration_clean_unet import CleanUNetConfig
from toolbox.torchaudio.models.clean_unet.modeling_clean_unet import CleanUNetPretrainedModel
from toolbox.torchaudio.models.clean_unet.training import LinearWarmupCosineDecay
from toolbox.torchaudio.models.clean_unet.loss import MultiResolutionSTFTLoss
from toolbox.torchaudio.models.clean_unet.metrics import run_pesq_score
torch.autograd.set_detect_anomaly(True)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--max_epochs", default=100, type=int)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--learning_rate", default=2e-4, type=float)
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
parser.add_argument("--patience", default=5, type=int)
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--config_file", default="config.yaml", type=str)
args = parser.parse_args()
return args
def logging_config(file_dir: str):
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
file_handler = TimedRotatingFileHandler(
filename=os.path.join(file_dir, "main.log"),
encoding="utf-8",
when="D",
interval=1,
backupCount=7
)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
logger.addHandler(file_handler)
return logger
class CollateFunction(object):
def __init__(self):
pass
def __call__(self, batch: List[dict]):
clean_audios = list()
noisy_audios = list()
for sample in batch:
# noise_wave: torch.Tensor = sample["noise_wave"]
clean_audio: torch.Tensor = sample["speech_wave"]
noisy_audio: torch.Tensor = sample["mix_wave"]
# snr_db: float = sample["snr_db"]
clean_audios.append(clean_audio)
noisy_audios.append(noisy_audio)
clean_audios = torch.stack(clean_audios)
noisy_audios = torch.stack(noisy_audios)
# assert
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
raise AssertionError("nan or inf in clean_audios")
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
raise AssertionError("nan or inf in noisy_audios")
return clean_audios, noisy_audios
collate_fn = CollateFunction()
def main():
args = get_args()
config = CleanUNetConfig.from_pretrained(
pretrained_model_name_or_path=args.config_file,
)
serialization_dir = Path(args.serialization_dir)
serialization_dir.mkdir(parents=True, exist_ok=True)
logger = logging_config(serialization_dir)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
logger.info(f"set seed: {args.seed}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info(f"GPU available count: {n_gpu}; device: {device}")
# datasets
train_dataset = DenoiseExcelDataset(
excel_file=args.train_dataset,
expected_sample_rate=8000,
max_wave_value=32768.0,
)
valid_dataset = DenoiseExcelDataset(
excel_file=args.valid_dataset,
expected_sample_rate=8000,
max_wave_value=32768.0,
)
train_data_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
valid_data_loader = DataLoader(
dataset=valid_dataset,
batch_size=args.batch_size,
shuffle=True,
sampler=None,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
# models
logger.info(f"prepare models. config_file: {args.config_file}")
model = CleanUNetPretrainedModel(config).to(device)
# optimizer
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
optimizer = torch.optim.AdamW(model.parameters(), args.learning_rate)
# resume training
last_epoch = -1
for epoch_i in serialization_dir.glob("epoch-*"):
epoch_i = Path(epoch_i)
epoch_idx = epoch_i.stem.split("-")[1]
epoch_idx = int(epoch_idx)
if epoch_idx > last_epoch:
last_epoch = epoch_idx
if last_epoch != -1:
logger.info(f"resume from epoch-{last_epoch}.")
model_pt = serialization_dir / f"epoch-{last_epoch}/model.pt"
optimizer_pth = serialization_dir / f"epoch-{last_epoch}/optimizer.pth"
logger.info(f"load state dict for model.")
with open(model_pt.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
model.load_state_dict(state_dict, strict=True)
logger.info(f"load state dict for optimizer.")
with open(optimizer_pth.as_posix(), "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
optimizer.load_state_dict(state_dict)
lr_scheduler = LinearWarmupCosineDecay(
optimizer,
lr_max=args.learning_rate,
n_iter=250000,
iteration=250000,
divider=25,
warmup_proportion=0.05,
phase=("linear", "cosine"),
)
# ae_loss_fn = nn.MSELoss(reduction="mean")
ae_loss_fn = nn.L1Loss(reduction="mean").to(device)
mr_stft_loss_fn = MultiResolutionSTFTLoss(
fft_sizes=[256, 512, 1024],
hop_sizes=[25, 50, 120],
win_lengths=[120, 240, 600],
sc_lambda=0.5,
mag_lambda=0.5,
band="full"
).to(device)
# training loop
# state
average_pesq_score = 10000000000
average_loss = 10000000000
average_ae_loss = 10000000000
average_sc_loss = 10000000000
average_mag_loss = 10000000000
model_list = list()
best_idx_epoch = None
best_metric = None
patience_count = 0
logger.info("training")
for idx_epoch in range(max(0, last_epoch+1), args.max_epochs):
# train
model.train()
total_pesq_score = 0.
total_loss = 0.
total_ae_loss = 0.
total_sc_loss = 0.
total_mag_loss = 0.
total_batches = 0.
progress_bar = tqdm(
total=len(train_data_loader),
desc="Training; epoch: {}".format(idx_epoch),
)
for batch in train_data_loader:
clean_audios, noisy_audios = batch
clean_audios = clean_audios.to(device)
noisy_audios = noisy_audios.to(device)
enhanced_audios = model.forward(noisy_audios)
enhanced_audios = torch.squeeze(enhanced_audios, dim=1)
ae_loss = ae_loss_fn(enhanced_audios, clean_audios)
sc_loss, mag_loss = mr_stft_loss_fn(enhanced_audios, clean_audios)
loss = ae_loss + sc_loss + mag_loss
enhanced_audios_list_r = list(enhanced_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, enhanced_audios_list_r, sample_rate=8000, mode="nb")
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
total_pesq_score += pesq_score
total_loss += loss.item()
total_ae_loss += ae_loss.item()
total_sc_loss += sc_loss.item()
total_mag_loss += mag_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_ae_loss = round(total_ae_loss / total_batches, 4)
average_sc_loss = round(total_sc_loss / total_batches, 4)
average_mag_loss = round(total_mag_loss / total_batches, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"sc_loss": average_sc_loss,
"mag_loss": average_mag_loss,
})
# evaluation
model.eval()
torch.cuda.empty_cache()
total_pesq_score = 0.
total_loss = 0.
total_ae_loss = 0.
total_sc_loss = 0.
total_mag_loss = 0.
total_batches = 0.
progress_bar = tqdm(
total=len(valid_data_loader),
desc="Evaluation; epoch: {}".format(idx_epoch),
)
with torch.no_grad():
for batch in valid_data_loader:
clean_audios, noisy_audios = batch
clean_audios = clean_audios.to(device)
noisy_audios = noisy_audios.to(device)
enhanced_audios = model.forward(noisy_audios)
enhanced_audios = torch.squeeze(enhanced_audios, dim=1)
ae_loss = ae_loss_fn(enhanced_audios, clean_audios)
sc_loss, mag_loss = mr_stft_loss_fn(enhanced_audios, clean_audios)
loss = ae_loss + sc_loss + mag_loss
enhanced_audios_list_r = list(enhanced_audios.detach().cpu().numpy())
clean_audios_list_r = list(clean_audios.detach().cpu().numpy())
pesq_score = run_pesq_score(clean_audios_list_r, enhanced_audios_list_r, sample_rate=8000, mode="nb")
total_pesq_score += pesq_score
total_loss += loss.item()
total_ae_loss += ae_loss.item()
total_sc_loss += sc_loss.item()
total_mag_loss += mag_loss.item()
total_batches += 1
average_pesq_score = round(total_pesq_score / total_batches, 4)
average_loss = round(total_loss / total_batches, 4)
average_ae_loss = round(total_ae_loss / total_batches, 4)
average_sc_loss = round(total_sc_loss / total_batches, 4)
average_mag_loss = round(total_mag_loss / total_batches, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"sc_loss": average_sc_loss,
"mag_loss": average_mag_loss,
})
# scheduler
lr_scheduler.step()
# save path
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
epoch_dir.mkdir(parents=True, exist_ok=False)
# save models
model.save_pretrained(epoch_dir.as_posix())
model_list.append(epoch_dir)
if len(model_list) >= args.num_serialized_models_to_keep:
model_to_delete: Path = model_list.pop(0)
shutil.rmtree(model_to_delete.as_posix())
# save optim
torch.save(optimizer.state_dict(), (epoch_dir / "optimizer.pth").as_posix())
# save metric
if best_metric is None:
best_idx_epoch = idx_epoch
best_metric = average_pesq_score
elif average_pesq_score > best_metric:
# great is better.
best_idx_epoch = idx_epoch
best_metric = average_pesq_score
else:
pass
metrics = {
"idx_epoch": idx_epoch,
"best_idx_epoch": best_idx_epoch,
"pesq_score": average_pesq_score,
"loss": average_loss,
"ae_loss": average_ae_loss,
"sc_loss": average_sc_loss,
"mag_loss": average_mag_loss,
}
metrics_filename = epoch_dir / "metrics_epoch.json"
with open(metrics_filename, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4, ensure_ascii=False)
# save best
best_dir = serialization_dir / "best"
if best_idx_epoch == idx_epoch:
if best_dir.exists():
shutil.rmtree(best_dir)
shutil.copytree(epoch_dir, best_dir)
# early stop
early_stop_flag = False
if best_idx_epoch == idx_epoch:
patience_count = 0
else:
patience_count += 1
if patience_count >= args.patience:
early_stop_flag = True
# early stop
if early_stop_flag:
break
return
if __name__ == "__main__":
main()