Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
""" | |
https://github.com/kaituoxu/Conv-TasNet/tree/master/src | |
一般场景: | |
目标 SI-SNR ≥ 10 dB,适用于电话通信、基础语音助手等。 | |
高要求场景(如医疗助听、语音识别): | |
需 SI-SNR ≥ 14 dB,并配合 PESQ ≥ 3.0 和 STOI ≥ 0.851812。 | |
""" | |
import argparse | |
import json | |
import logging | |
from logging.handlers import TimedRotatingFileHandler | |
import os | |
import platform | |
from pathlib import Path | |
import random | |
import sys | |
import shutil | |
from typing import List | |
pwd = os.path.abspath(os.path.dirname(__file__)) | |
sys.path.append(os.path.join(pwd, "../../")) | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.utils.data.dataloader import DataLoader | |
from tqdm import tqdm | |
from toolbox.torch.utils.data.dataset.denoise_jsonl_dataset import DenoiseJsonlDataset | |
from toolbox.torchaudio.models.conv_tasnet.configuration_conv_tasnet import ConvTasNetConfig | |
from toolbox.torchaudio.models.conv_tasnet.modeling_conv_tasnet import ConvTasNet, ConvTasNetPretrainedModel | |
from toolbox.torchaudio.losses.snr import NegativeSISNRLoss | |
from toolbox.torchaudio.losses.spectral import LSDLoss, MultiResolutionSTFTLoss | |
from toolbox.torchaudio.losses.perceptual import NegSTOILoss, PesqLoss | |
from toolbox.torchaudio.metrics.pesq import run_pesq_score | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--train_dataset", default="train.xlsx", type=str) | |
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str) | |
parser.add_argument("--max_epochs", default=200, type=int) | |
parser.add_argument("--batch_size", default=8, type=int) | |
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int) | |
parser.add_argument("--patience", default=5, type=int) | |
parser.add_argument("--serialization_dir", default="serialization_dir", type=str) | |
parser.add_argument("--seed", default=1234, type=int) | |
parser.add_argument("--config_file", default="config.yaml", type=str) | |
args = parser.parse_args() | |
return args | |
def logging_config(file_dir: str): | |
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s" | |
logging.basicConfig(format=fmt, | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO) | |
file_handler = TimedRotatingFileHandler( | |
filename=os.path.join(file_dir, "main.log"), | |
encoding="utf-8", | |
when="D", | |
interval=1, | |
backupCount=7 | |
) | |
file_handler.setLevel(logging.INFO) | |
file_handler.setFormatter(logging.Formatter(fmt)) | |
logger = logging.getLogger(__name__) | |
logger.addHandler(file_handler) | |
return logger | |
class CollateFunction(object): | |
def __init__(self): | |
pass | |
def __call__(self, batch: List[dict]): | |
clean_audios = list() | |
noisy_audios = list() | |
for sample in batch: | |
# noise_wave: torch.Tensor = sample["noise_wave"] | |
clean_audio: torch.Tensor = sample["speech_wave"] | |
noisy_audio: torch.Tensor = sample["mix_wave"] | |
# snr_db: float = sample["snr_db"] | |
clean_audios.append(clean_audio) | |
noisy_audios.append(noisy_audio) | |
clean_audios = torch.stack(clean_audios) | |
noisy_audios = torch.stack(noisy_audios) | |
# assert | |
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)): | |
raise AssertionError("nan or inf in clean_audios") | |
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)): | |
raise AssertionError("nan or inf in noisy_audios") | |
return clean_audios, noisy_audios | |
collate_fn = CollateFunction() | |
def main(): | |
args = get_args() | |
config = ConvTasNetConfig.from_pretrained( | |
pretrained_model_name_or_path=args.config_file, | |
) | |
serialization_dir = Path(args.serialization_dir) | |
serialization_dir.mkdir(parents=True, exist_ok=True) | |
logger = logging_config(serialization_dir) | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
logger.info(f"set seed: {args.seed}") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
n_gpu = torch.cuda.device_count() | |
logger.info(f"GPU available count: {n_gpu}; device: {device}") | |
# datasets | |
train_dataset = DenoiseJsonlDataset( | |
jsonl_file=args.train_dataset, | |
expected_sample_rate=config.sample_rate, | |
max_wave_value=32768.0, | |
min_snr_db=config.min_snr_db, | |
max_snr_db=config.max_snr_db, | |
skip=825000, | |
) | |
valid_dataset = DenoiseJsonlDataset( | |
jsonl_file=args.valid_dataset, | |
expected_sample_rate=config.sample_rate, | |
max_wave_value=32768.0, | |
min_snr_db=config.min_snr_db, | |
max_snr_db=config.max_snr_db, | |
) | |
train_data_loader = DataLoader( | |
dataset=train_dataset, | |
batch_size=args.batch_size, | |
# shuffle=True, | |
sampler=None, | |
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能. | |
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2, | |
collate_fn=collate_fn, | |
pin_memory=False, | |
prefetch_factor=2, | |
) | |
valid_data_loader = DataLoader( | |
dataset=valid_dataset, | |
batch_size=args.batch_size, | |
# shuffle=True, | |
sampler=None, | |
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能. | |
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2, | |
collate_fn=collate_fn, | |
pin_memory=False, | |
prefetch_factor=2, | |
) | |
# models | |
logger.info(f"prepare models. config_file: {args.config_file}") | |
model = ConvTasNetPretrainedModel(config).to(device) | |
model.to(device) | |
model.train() | |
# optimizer | |
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy") | |
optimizer = torch.optim.AdamW(model.parameters(), config.lr) | |
# resume training | |
last_step_idx = -1 | |
last_epoch = -1 | |
for step_idx_str in serialization_dir.glob("steps-*"): | |
step_idx_str = Path(step_idx_str) | |
step_idx = step_idx_str.stem.split("-")[1] | |
step_idx = int(step_idx) | |
if step_idx > last_step_idx: | |
last_step_idx = step_idx | |
if last_step_idx != -1: | |
logger.info(f"resume from steps-{last_step_idx}.") | |
model_pt = serialization_dir / f"steps-{last_step_idx}/model.pt" | |
optimizer_pth = serialization_dir / f"steps-{last_step_idx}/optimizer.pth" | |
logger.info(f"load state dict for model.") | |
with open(model_pt.as_posix(), "rb") as f: | |
state_dict = torch.load(f, map_location="cpu", weights_only=True) | |
model.load_state_dict(state_dict, strict=True) | |
logger.info(f"load state dict for optimizer.") | |
with open(optimizer_pth.as_posix(), "rb") as f: | |
state_dict = torch.load(f, map_location="cpu", weights_only=True) | |
optimizer.load_state_dict(state_dict) | |
if config.lr_scheduler == "CosineAnnealingLR": | |
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( | |
optimizer, | |
last_epoch=last_epoch, | |
# T_max=10 * config.eval_steps, | |
# eta_min=0.01 * config.lr, | |
**config.lr_scheduler_kwargs, | |
) | |
elif config.lr_scheduler == "MultiStepLR": | |
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | |
optimizer, | |
last_epoch=last_epoch, | |
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5 | |
) | |
else: | |
raise AssertionError(f"invalid lr_scheduler: {config.lr_scheduler}") | |
ae_loss_fn = nn.L1Loss(reduction="mean").to(device) | |
neg_si_snr_loss_fn = NegativeSISNRLoss(reduction="mean").to(device) | |
neg_stoi_loss_fn = NegSTOILoss(sample_rate=config.sample_rate, reduction="mean").to(device) | |
mr_stft_loss_fn = MultiResolutionSTFTLoss( | |
fft_size_list=[256, 512, 1024], | |
win_size_list=[120, 240, 480], | |
hop_size_list=[25, 50, 100], | |
factor_sc=1.5, | |
factor_mag=1.0, | |
reduction="mean" | |
).to(device) | |
pesq_loss_fn = PesqLoss(0.5, sample_rate=config.sample_rate).to(device) | |
# training loop | |
# state | |
average_pesq_score = 1000000000 | |
average_loss = 1000000000 | |
average_ae_loss = 1000000000 | |
average_neg_si_snr_loss = 1000000000 | |
average_neg_stoi_loss = 1000000000 | |
model_list = list() | |
best_epoch_idx = None | |
best_step_idx = None | |
best_metric = None | |
patience_count = 0 | |
step_idx = 0 if last_step_idx == -1 else last_step_idx | |
logger.info("training") | |
for epoch_idx in range(max(0, last_epoch+1), args.max_epochs): | |
# train | |
model.train() | |
total_pesq_score = 0. | |
total_loss = 0. | |
total_ae_loss = 0. | |
total_neg_si_snr_loss = 0. | |
total_neg_stoi_loss = 0. | |
total_mr_stft_loss = 0. | |
total_pesq_loss = 0. | |
total_batches = 0. | |
progress_bar_train = tqdm( | |
initial=step_idx, | |
desc="Training; epoch-{}".format(epoch_idx), | |
) | |
for train_batch in train_data_loader: | |
clean_audios, noisy_audios = train_batch | |
clean_audios: torch.Tensor = clean_audios.to(device) | |
noisy_audios: torch.Tensor = noisy_audios.to(device) | |
denoise_audios = model.forward(noisy_audios) | |
denoise_audios = torch.squeeze(denoise_audios, dim=1) | |
if torch.any(torch.isnan(denoise_audios)) or torch.any(torch.isinf(denoise_audios)): | |
raise AssertionError("nan or inf in denoise_audios") | |
ae_loss = ae_loss_fn.forward(denoise_audios, clean_audios) | |
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios) | |
neg_stoi_loss = neg_stoi_loss_fn.forward(denoise_audios, clean_audios) | |
mr_stft_loss = mr_stft_loss_fn.forward(denoise_audios, clean_audios) | |
pesq_loss = pesq_loss_fn.forward(clean_audios, denoise_audios) | |
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss | |
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss + 0.25 * neg_stoi_loss + 0.25 * mr_stft_loss | |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss | |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss | |
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss | |
loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss | |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)): | |
logger.info(f"find nan or inf in loss.") | |
continue | |
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy()) | |
clean_audios_list_r = list(clean_audios.detach().cpu().numpy()) | |
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb") | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
lr_scheduler.step() | |
total_pesq_score += pesq_score | |
total_loss += loss.item() | |
total_ae_loss += ae_loss.item() | |
total_neg_si_snr_loss += neg_si_snr_loss.item() | |
total_neg_stoi_loss += neg_stoi_loss.item() | |
total_mr_stft_loss += mr_stft_loss.item() | |
total_pesq_loss += pesq_loss.item() | |
total_batches += 1 | |
average_pesq_score = round(total_pesq_score / total_batches, 4) | |
average_loss = round(total_loss / total_batches, 4) | |
average_ae_loss = round(total_ae_loss / total_batches, 4) | |
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4) | |
average_neg_stoi_loss = round(total_neg_stoi_loss / total_batches, 4) | |
average_mr_stft_loss = round(total_mr_stft_loss / total_batches, 4) | |
average_pesq_loss = round(total_pesq_loss / total_batches, 4) | |
progress_bar_train.update(1) | |
progress_bar_train.set_postfix({ | |
"lr": lr_scheduler.get_last_lr()[0], | |
"pesq_score": average_pesq_score, | |
"loss": average_loss, | |
"ae_loss": average_ae_loss, | |
"neg_si_snr_loss": average_neg_si_snr_loss, | |
"neg_stoi_loss": average_neg_stoi_loss, | |
"mr_stft_loss": average_mr_stft_loss, | |
"pesq_loss": average_pesq_loss, | |
}) | |
# evaluation | |
step_idx += 1 | |
if step_idx % config.eval_steps == 0: | |
with torch.no_grad(): | |
torch.cuda.empty_cache() | |
total_pesq_score = 0. | |
total_loss = 0. | |
total_ae_loss = 0. | |
total_neg_si_snr_loss = 0. | |
total_neg_stoi_loss = 0. | |
total_mr_stft_loss = 0. | |
total_pesq_loss = 0. | |
total_batches = 0. | |
progress_bar_train.close() | |
progress_bar_eval = tqdm( | |
desc="Evaluation; steps-{}k".format(int(step_idx/1000)), | |
) | |
for eval_batch in valid_data_loader: | |
clean_audios, noisy_audios = eval_batch | |
clean_audios = clean_audios.to(device) | |
noisy_audios = noisy_audios.to(device) | |
denoise_audios = model.forward(noisy_audios) | |
denoise_audios = torch.squeeze(denoise_audios, dim=1) | |
ae_loss = ae_loss_fn.forward(denoise_audios, clean_audios) | |
neg_si_snr_loss = neg_si_snr_loss_fn.forward(denoise_audios, clean_audios) | |
neg_stoi_loss = neg_stoi_loss_fn.forward(denoise_audios, clean_audios) | |
mr_stft_loss = mr_stft_loss_fn.forward(denoise_audios, clean_audios) | |
pesq_loss = pesq_loss_fn.forward(clean_audios, denoise_audios) | |
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss | |
# loss = 0.25 * ae_loss + 0.25 * neg_si_snr_loss + 0.25 * neg_stoi_loss + 0.25 * mr_stft_loss | |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.5 * mr_stft_loss + 0.3 * neg_stoi_loss | |
# loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss | |
# loss = 2.0 * mr_stft_loss + 0.8 * ae_loss + 0.7 * neg_si_snr_loss + 0.5 * neg_stoi_loss | |
loss = 1.0 * ae_loss + 0.8 * neg_si_snr_loss + 0.7 * mr_stft_loss + 0.5 * neg_stoi_loss + 0.5 * pesq_loss | |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)): | |
logger.info(f"find nan or inf in loss.") | |
continue | |
denoise_audios_list_r = list(denoise_audios.detach().cpu().numpy()) | |
clean_audios_list_r = list(clean_audios.detach().cpu().numpy()) | |
pesq_score = run_pesq_score(clean_audios_list_r, denoise_audios_list_r, sample_rate=config.sample_rate, mode="nb") | |
total_pesq_score += pesq_score | |
total_loss += loss.item() | |
total_ae_loss += ae_loss.item() | |
total_neg_si_snr_loss += neg_si_snr_loss.item() | |
total_neg_stoi_loss += neg_stoi_loss.item() | |
total_mr_stft_loss += mr_stft_loss.item() | |
total_pesq_loss += pesq_loss.item() | |
total_batches += 1 | |
average_pesq_score = round(total_pesq_score / total_batches, 4) | |
average_loss = round(total_loss / total_batches, 4) | |
average_ae_loss = round(total_ae_loss / total_batches, 4) | |
average_neg_si_snr_loss = round(total_neg_si_snr_loss / total_batches, 4) | |
average_neg_stoi_loss = round(total_neg_stoi_loss / total_batches, 4) | |
average_mr_stft_loss = round(total_mr_stft_loss / total_batches, 4) | |
average_pesq_loss = round(total_pesq_loss / total_batches, 4) | |
progress_bar_eval.update(1) | |
progress_bar_eval.set_postfix({ | |
"lr": lr_scheduler.get_last_lr()[0], | |
"pesq_score": average_pesq_score, | |
"loss": average_loss, | |
"ae_loss": average_ae_loss, | |
"neg_si_snr_loss": average_neg_si_snr_loss, | |
"neg_stoi_loss": average_neg_stoi_loss, | |
"mr_stft_loss": average_mr_stft_loss, | |
"pesq_loss": average_pesq_loss, | |
}) | |
total_pesq_score = 0. | |
total_loss = 0. | |
total_ae_loss = 0. | |
total_neg_si_snr_loss = 0. | |
total_neg_stoi_loss = 0. | |
total_mr_stft_loss = 0. | |
total_pesq_loss = 0. | |
total_batches = 0. | |
progress_bar_eval.close() | |
progress_bar_train = tqdm( | |
initial=progress_bar_train.n, | |
postfix=progress_bar_train.postfix, | |
desc=progress_bar_train.desc, | |
) | |
# save path | |
save_dir = serialization_dir / "steps-{}".format(step_idx) | |
save_dir.mkdir(parents=True, exist_ok=False) | |
# save models | |
model.save_pretrained(save_dir.as_posix()) | |
model_list.append(save_dir) | |
if len(model_list) >= args.num_serialized_models_to_keep: | |
model_to_delete: Path = model_list.pop(0) | |
shutil.rmtree(model_to_delete.as_posix()) | |
# save optim | |
torch.save(optimizer.state_dict(), (save_dir / "optimizer.pth").as_posix()) | |
# save metric | |
if best_metric is None: | |
best_epoch_idx = epoch_idx | |
best_step_idx = step_idx | |
best_metric = average_pesq_score | |
elif average_pesq_score > best_metric: | |
# great is better. | |
best_epoch_idx = epoch_idx | |
best_step_idx = step_idx | |
best_metric = average_pesq_score | |
else: | |
pass | |
metrics = { | |
"epoch_idx": epoch_idx, | |
"best_epoch_idx": best_epoch_idx, | |
"best_step_idx": best_step_idx, | |
"pesq_score": average_pesq_score, | |
"loss": average_loss, | |
"ae_loss": average_ae_loss, | |
"neg_si_snr_loss": average_neg_si_snr_loss, | |
"neg_stoi_loss": average_neg_stoi_loss, | |
"mr_stft_loss": average_mr_stft_loss, | |
"pesq_loss": average_pesq_loss, | |
} | |
metrics_filename = save_dir / "metrics_epoch.json" | |
with open(metrics_filename, "w", encoding="utf-8") as f: | |
json.dump(metrics, f, indent=4, ensure_ascii=False) | |
# save best | |
best_dir = serialization_dir / "best" | |
if best_epoch_idx == epoch_idx and best_step_idx == step_idx: | |
if best_dir.exists(): | |
shutil.rmtree(best_dir) | |
shutil.copytree(save_dir, best_dir) | |
# early stop | |
early_stop_flag = False | |
if best_epoch_idx == epoch_idx and best_step_idx == step_idx: | |
patience_count = 0 | |
else: | |
patience_count += 1 | |
if patience_count >= args.patience: | |
early_stop_flag = True | |
# early stop | |
if early_stop_flag: | |
break | |
return | |
if __name__ == "__main__": | |
main() | |