nx_denoise / examples /nx_clean_unet /step_3_evaluation.py
HoneyTian's picture
update
365fc03
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import logging
import os
from pathlib import Path
import sys
import uuid
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import librosa
import numpy as np
import pandas as pd
from scipy.io import wavfile
import torch
import torch.nn as nn
import torchaudio
from tqdm import tqdm
from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig
from toolbox.torchaudio.models.mpnet.modeling_mpnet import MPNetPretrainedModel
from toolbox.torchaudio.models.mpnet.utils import mag_pha_stft, mag_pha_istft
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--model_dir", default="serialization_dir/best", type=str)
parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str)
parser.add_argument("--limit", default=10, type=int)
args = parser.parse_args()
return args
def logging_config():
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
return logger
def main():
return
if __name__ == '__main__':
main()