Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
""" | |
https://github.com/modelscope/modelscope/blob/master/modelscope/models/audio/ans/conv_stft.py | |
""" | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from scipy.signal import get_window | |
def init_kernels(nfft: int, win_size: int, hop_size: int, win_type: str = None, inverse=False): | |
if win_type == "None" or win_type is None: | |
window = np.ones(win_size) | |
else: | |
window = get_window(win_type, win_size, fftbins=True)**0.5 | |
fourier_basis = np.fft.rfft(np.eye(nfft))[:win_size] | |
real_kernel = np.real(fourier_basis) | |
image_kernel = np.imag(fourier_basis) | |
kernel = np.concatenate([real_kernel, image_kernel], 1).T | |
if inverse: | |
kernel = np.linalg.pinv(kernel).T | |
kernel = kernel * window | |
kernel = kernel[:, None, :] | |
result = ( | |
torch.from_numpy(kernel.astype(np.float32)), | |
torch.from_numpy(window[None, :, None].astype(np.float32)) | |
) | |
return result | |
class ConvSTFT(nn.Module): | |
def __init__(self, | |
nfft: int, | |
win_size: int, | |
hop_size: int, | |
win_type: str = "hamming", | |
feature_type: str = "real", | |
requires_grad: bool = False): | |
super(ConvSTFT, self).__init__() | |
if nfft is None: | |
self.nfft = int(2**np.ceil(np.log2(win_size))) | |
else: | |
self.nfft = nfft | |
kernel, _ = init_kernels(self.nfft, win_size, hop_size, win_type) | |
self.weight = nn.Parameter(kernel, requires_grad=requires_grad) | |
self.win_size = win_size | |
self.hop_size = hop_size | |
self.stride = hop_size | |
self.dim = self.nfft | |
self.feature_type = feature_type | |
def forward(self, inputs: torch.Tensor): | |
if inputs.dim() == 2: | |
inputs = torch.unsqueeze(inputs, 1) | |
outputs = F.conv1d(inputs, self.weight, stride=self.stride) | |
if self.feature_type == "complex": | |
return outputs | |
else: | |
dim = self.dim // 2 + 1 | |
real = outputs[:, :dim, :] | |
imag = outputs[:, dim:, :] | |
mags = torch.sqrt(real**2 + imag**2) | |
phase = torch.atan2(imag, real) | |
return mags, phase | |
class ConviSTFT(nn.Module): | |
def __init__(self, | |
win_size: int, | |
hop_size: int, | |
nfft: int = None, | |
win_type: str = "hamming", | |
feature_type: str = "real", | |
requires_grad: bool = False): | |
super(ConviSTFT, self).__init__() | |
if nfft is None: | |
self.nfft = int(2**np.ceil(np.log2(win_size))) | |
else: | |
self.nfft = nfft | |
kernel, window = init_kernels(self.nfft, win_size, hop_size, win_type, inverse=True) | |
self.weight = nn.Parameter(kernel, requires_grad=requires_grad) | |
self.win_size = win_size | |
self.hop_size = hop_size | |
self.win_type = win_type | |
self.stride = hop_size | |
self.dim = self.nfft | |
self.feature_type = feature_type | |
self.register_buffer("window", window) | |
self.register_buffer("enframe", torch.eye(win_size)[:, None, :]) | |
def forward(self, | |
inputs: torch.Tensor, | |
phase: torch.Tensor = None): | |
""" | |
:param inputs: torch.Tensor, shape: [b, n+2, t] (complex spec) or [b, n//2+1, t] (mags) | |
:param phase: torch.Tensor, shape: [b, n//2+1, t] | |
:return: | |
""" | |
if phase is not None: | |
real = inputs * torch.cos(phase) | |
imag = inputs * torch.sin(phase) | |
inputs = torch.cat([real, imag], 1) | |
outputs = F.conv_transpose1d(inputs, self.weight, stride=self.stride) | |
# this is from torch-stft: https://github.com/pseeth/torch-stft | |
t = self.window.repeat(1, 1, inputs.size(-1))**2 | |
coff = F.conv_transpose1d(t, self.enframe, stride=self.stride) | |
outputs = outputs / (coff + 1e-8) | |
return outputs | |
def main(): | |
stft = ConvSTFT(win_size=512, hop_size=200, feature_type="complex") | |
istft = ConviSTFT(win_size=512, hop_size=200, feature_type="complex") | |
mixture = torch.rand(size=(1, 8000*40), dtype=torch.float32) | |
spec = stft.forward(mixture) | |
# shape: [batch_size, freq_bins, time_steps] | |
print(spec.shape) | |
waveform = istft.forward(spec) | |
# shape: [batch_size, channels, num_samples] | |
print(waveform.shape) | |
return | |
if __name__ == "__main__": | |
main() | |