Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
""" | |
https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS/blob/main/denoiser/generator.py | |
https://huggingface.co/spaces/JacobLinCool/MP-SENet | |
https://arxiv.org/abs/2305.13686 | |
https://github.com/yxlu-0102/MP-SENet | |
应该是不支持流式改造的。 | |
""" | |
import os | |
from typing import Optional, Union | |
from pesq import pesq | |
from joblib import Parallel, delayed | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE | |
from toolbox.torchaudio.models.mpnet.conformer import ConformerBlock | |
from toolbox.torchaudio.models.mpnet.transformers import TransformerBlock | |
from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig | |
from toolbox.torchaudio.models.mpnet.utils import LearnableSigmoid2d | |
class SPConvTranspose2d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, r=1): | |
super(SPConvTranspose2d, self).__init__() | |
self.pad1 = nn.ConstantPad2d((1, 1, 0, 0), value=0.) | |
self.out_channels = out_channels | |
self.conv = nn.Conv2d(in_channels, out_channels * r, kernel_size=kernel_size, stride=(1, 1)) | |
self.r = r | |
def forward(self, x): | |
x = self.pad1(x) | |
out = self.conv(x) | |
batch_size, nchannels, H, W = out.shape | |
out = out.view((batch_size, self.r, nchannels // self.r, H, W)) | |
out = out.permute(0, 2, 3, 4, 1) | |
out = out.contiguous().view((batch_size, nchannels // self.r, H, -1)) | |
return out | |
class DenseBlock(nn.Module): | |
def __init__(self, h, kernel_size=(2, 3), depth=4): | |
super(DenseBlock, self).__init__() | |
self.h = h | |
self.depth = depth | |
self.dense_block = nn.ModuleList([]) | |
for i in range(depth): | |
dilation = 2 ** i | |
pad_length = dilation | |
dense_conv = nn.Sequential( | |
nn.ConstantPad2d((1, 1, pad_length, 0), value=0.), | |
nn.Conv2d(h.dense_channel*(i+1), h.dense_channel, kernel_size, dilation=(dilation, 1)), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel) | |
) | |
self.dense_block.append(dense_conv) | |
def forward(self, x): | |
skip = x | |
for i in range(self.depth): | |
x = self.dense_block[i](skip) | |
skip = torch.cat([x, skip], dim=1) | |
return x | |
class DenseEncoder(nn.Module): | |
def __init__(self, h, in_channel): | |
super(DenseEncoder, self).__init__() | |
self.h = h | |
self.dense_conv_1 = nn.Sequential( | |
nn.Conv2d(in_channel, h.dense_channel, (1, 1)), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel)) | |
self.dense_block = DenseBlock(h, depth=4) | |
self.dense_conv_2 = nn.Sequential( | |
nn.Conv2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2), padding=(0, 1)), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel)) | |
def forward(self, x): | |
x = self.dense_conv_1(x) # [b, 64, T, F] | |
x = self.dense_block(x) # [b, 64, T, F] | |
x = self.dense_conv_2(x) # [b, 64, T, F//2] | |
return x | |
class MaskDecoder(nn.Module): | |
def __init__(self, h, out_channel=1): | |
super(MaskDecoder, self).__init__() | |
self.dense_block = DenseBlock(h, depth=4) | |
self.mask_conv = nn.Sequential( | |
SPConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), 2), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel), | |
nn.Conv2d(h.dense_channel, out_channel, (1, 2)) | |
) | |
self.lsigmoid = LearnableSigmoid2d(h.n_fft//2+1, beta=h.beta) | |
def forward(self, x): | |
x = self.dense_block(x) | |
x = self.mask_conv(x) | |
x = x.permute(0, 3, 2, 1).squeeze(-1) # [B, F, T] | |
x = self.lsigmoid(x) | |
return x | |
class PhaseDecoder(nn.Module): | |
def __init__(self, h, out_channel=1): | |
super(PhaseDecoder, self).__init__() | |
self.dense_block = DenseBlock(h, depth=4) | |
self.phase_conv = nn.Sequential( | |
SPConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), 2), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel) | |
) | |
self.phase_conv_r = nn.Conv2d(h.dense_channel, out_channel, (1, 2)) | |
self.phase_conv_i = nn.Conv2d(h.dense_channel, out_channel, (1, 2)) | |
def forward(self, x): | |
x = self.dense_block(x) | |
x = self.phase_conv(x) | |
x_r = self.phase_conv_r(x) | |
x_i = self.phase_conv_i(x) | |
x = torch.atan2(x_i, x_r) | |
x = x.permute(0, 3, 2, 1).squeeze(-1) # [B, F, T] | |
return x | |
class TSTransformerBlock(nn.Module): | |
def __init__(self, h): | |
super(TSTransformerBlock, self).__init__() | |
self.h = h | |
self.time_transformer = TransformerBlock(d_model=h.dense_channel, n_heads=4) | |
self.freq_transformer = TransformerBlock(d_model=h.dense_channel, n_heads=4) | |
def forward(self, x): | |
b, c, t, f = x.size() | |
x = x.permute(0, 3, 2, 1).contiguous().view(b*f, t, c) | |
x = self.time_transformer(x) + x | |
x = x.view(b, f, t, c).permute(0, 2, 1, 3).contiguous().view(b*t, f, c) | |
x = self.freq_transformer(x) + x | |
x = x.view(b, t, f, c).permute(0, 3, 1, 2) | |
return x | |
class MPNet(nn.Module): | |
def __init__(self, config: MPNetConfig, num_tsblocks=4): | |
super(MPNet, self).__init__() | |
self.num_tscblocks = num_tsblocks | |
self.dense_encoder = DenseEncoder(config, in_channel=2) | |
self.TSTransformer = nn.ModuleList([]) | |
for i in range(num_tsblocks): | |
self.TSTransformer.append(TSTransformerBlock(config)) | |
self.mask_decoder = MaskDecoder(config, out_channel=1) | |
self.phase_decoder = PhaseDecoder(config, out_channel=1) | |
def forward(self, noisy_amp, noisy_pha): # [B, F, T] | |
x = torch.stack((noisy_amp, noisy_pha), dim=-1).permute(0, 3, 2, 1) # [B, 2, T, F] | |
x = self.dense_encoder(x) | |
for i in range(self.num_tscblocks): | |
x = self.TSTransformer[i](x) | |
denoised_amp = noisy_amp * self.mask_decoder(x) | |
denoised_pha = self.phase_decoder(x) | |
denoised_com = torch.stack( | |
tensors=( | |
denoised_amp * torch.cos(denoised_pha), | |
denoised_amp * torch.sin(denoised_pha) | |
), | |
dim=-1 | |
) | |
return denoised_amp, denoised_pha, denoised_com | |
MODEL_FILE = "generator.pt" | |
class MPNetPretrainedModel(MPNet): | |
def __init__(self, | |
config: MPNetConfig, | |
): | |
super(MPNetPretrainedModel, self).__init__( | |
config=config, | |
) | |
self.config = config | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
config = MPNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
model = cls(config) | |
if os.path.isdir(pretrained_model_name_or_path): | |
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE) | |
else: | |
ckpt_file = pretrained_model_name_or_path | |
with open(ckpt_file, "rb") as f: | |
state_dict = torch.load(f, map_location="cpu", weights_only=True) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def save_pretrained(self, | |
save_directory: Union[str, os.PathLike], | |
state_dict: Optional[dict] = None, | |
): | |
model = self | |
if state_dict is None: | |
state_dict = model.state_dict() | |
os.makedirs(save_directory, exist_ok=True) | |
# save state dict | |
model_file = os.path.join(save_directory, MODEL_FILE) | |
torch.save(state_dict, model_file) | |
# save config | |
config_file = os.path.join(save_directory, CONFIG_FILE) | |
self.config.to_yaml_file(config_file) | |
return save_directory | |
def phase_losses(phase_r, phase_g): | |
ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g)) | |
gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1))) | |
iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2))) | |
return ip_loss, gd_loss, iaf_loss | |
def anti_wrapping_function(x): | |
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi) | |
# def pesq_score(utts_r, utts_g, h): | |
# | |
# pesq_score = Parallel(n_jobs=30)(delayed(eval_pesq)( | |
# utts_r[i].squeeze().cpu().numpy(), | |
# utts_g[i].squeeze().cpu().numpy(), | |
# h.sample_rate, ) | |
# for i in range(len(utts_r))) | |
# pesq_score = np.mean(pesq_score) | |
# | |
# return pesq_score | |
# | |
# | |
# def eval_pesq(clean_utt, esti_utt, sr): | |
# try: | |
# mode = "nb" if sr == 8000 else "wb" | |
# pesq_score = pesq(sr, clean_utt, esti_utt, mode=mode) | |
# except: | |
# pesq_score = -1 | |
# | |
# return pesq_score | |
def main(): | |
import torchaudio | |
config = MPNetConfig() | |
model = MPNet(config=config) | |
transformer = torchaudio.transforms.Spectrogram( | |
n_fft=config.n_fft, | |
win_length=config.win_size, | |
hop_length=config.hop_size, | |
window_fn=torch.hamming_window, | |
) | |
inputs = torch.randn(size=(1, 32000), dtype=torch.float32) | |
spec = transformer.forward(inputs) | |
print(spec.shape) | |
denoised_amp, denoised_pha, denoised_com = model.forward(spec, spec) | |
print(denoised_amp.shape) | |
print(denoised_pha.shape) | |
print(denoised_com.shape) | |
return | |
if __name__ == '__main__': | |
main() | |