SparseAGS / sparseags /visual_utils.py
qitaoz's picture
init commit
4f54ccd verified
raw
history blame
9.02 kB
import os
import re
import cv2
import csv
import json
import math
import tqdm
import shutil
import argparse
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr
from kiui.mesh import Mesh
from kiui.cam import OrbitCamera
from kiui.op import safe_normalize
from kiui.lpips import LPIPS
import sys
from sparseags.mesh_utils.mesh_renderer import Renderer
from sparseags.cam_utils import orbit_camera, OrbitCamera
from sparseags.render_utils.gs_renderer import CustomCamera
class GUI:
def __init__(self, opt):
self.opt = opt
self.W = opt.W
self.H = opt.H
self.wogui = opt.wogui # disable gui and run in cmd
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.bg_color = torch.ones(3, dtype=torch.float32).cuda() # default white bg
# self.bg_color = torch.zeros(3, dtype=torch.float32).cuda() # black bg
self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # camera moved, should reset accumulation
self.light_dir = np.array([0, 0])
self.ambient_ratio = 0.5
# auto-rotate
self.auto_rotate_cam = False
self.auto_rotate_light = False
self.mode = opt.mode
self.render_modes = ['albedo', 'depth', 'normal', 'lambertian']
# load mesh
self.mesh = Mesh.load(opt.mesh, front_dir=opt.front_dir)
if not opt.force_cuda_rast and (self.wogui or os.name == 'nt'):
self.glctx = dr.RasterizeGLContext()
else:
self.glctx = dr.RasterizeCudaContext()
def step(self):
if not self.need_update:
return
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
# do MVP for vertices
pose = torch.from_numpy(self.cam.pose.astype(np.float32)).cuda()
proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).cuda()
v_cam = torch.matmul(F.pad(self.mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
v_clip = v_cam @ proj.T
rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (self.H, self.W))
alpha = (rast[..., 3:] > 0).float()
alpha = dr.antialias(alpha, rast, v_clip, self.mesh.f).squeeze(0).clamp(0, 1) # [H, W, 3]
if self.mode == 'depth':
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1]
depth = (depth - depth.min()) / (depth.max() - depth.min() + 1e-20)
buffer = depth.squeeze(0).detach().cpu().numpy().repeat(3, -1) # [H, W, 3]
else:
# use vertex color if exists
if self.mesh.vc is not None:
albedo, _ = dr.interpolate(self.mesh.vc.unsqueeze(0).contiguous(), rast, self.mesh.f)
# use texture image
else:
texc, _ = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft)
albedo = dr.texture(self.mesh.albedo.unsqueeze(0), texc, filter_mode='linear') # [1, H, W, 3]
albedo = torch.where(rast[..., 3:] > 0, albedo, torch.tensor(0).to(albedo.device)) # remove background
albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).clamp(0, 1) # [1, H, W, 3]
if self.mode == 'albedo':
albedo = albedo * alpha + self.bg_color * (1 - alpha)
buffer = albedo[0].detach().cpu().numpy()
else:
normal, _ = dr.interpolate(self.mesh.vn.unsqueeze(0).contiguous(), rast, self.mesh.fn)
normal = safe_normalize(normal)
if self.mode == 'normal':
normal_image = (normal[0] + 1) / 2
normal_image = torch.where(rast[..., 3:] > 0, normal_image, torch.tensor(1).to(normal_image.device)) # remove background
buffer = normal_image.detach().cpu().numpy()
elif self.mode == 'lambertian':
light_d = np.deg2rad(self.light_dir)
light_d = np.array([
np.cos(light_d[0]) * np.sin(light_d[1]),
-np.sin(light_d[0]),
np.cos(light_d[0]) * np.cos(light_d[1]),
], dtype=np.float32)
light_d = torch.from_numpy(light_d).to(albedo.device)
lambertian = self.ambient_ratio + (1 - self.ambient_ratio) * (normal @ light_d).float().clamp(min=0)
albedo = (albedo * lambertian.unsqueeze(-1)) * alpha + self.bg_color * (1 - alpha)
buffer = albedo[0].detach().cpu().numpy()
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.render_buffer = buffer
self.need_update = False
if self.auto_rotate_cam:
self.cam.orbit(5, 0)
self.need_update = True
if self.auto_rotate_light:
self.light_dir[1] += 3
self.need_update = True
def vis_output(camera_data, mesh_path=None, save_path=None, num_views=8):
parser = argparse.ArgumentParser()
parser.add_argument('--front_dir', type=str, default='+z', help="mesh front-facing dir")
parser.add_argument('--mode', default='albedo', type=str, choices=['lambertian', 'albedo', 'normal', 'depth'], help="rendering mode")
parser.add_argument('--W', type=int, default=256, help="GUI width")
parser.add_argument('--H', type=int, default=256, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=49.1, help="default GUI camera fovy")
parser.add_argument("--wogui", type=bool, default=True, help="disable all dpg GUI")
parser.add_argument("--force_cuda_rast", action='store_true', help="force to use RasterizeCudaContext.")
parser.add_argument('--elevation', type=int, default=0, help="rendering elevation")
parser.add_argument('--save_video', type=str, default=None, help="path to save rendered video")
parser.add_argument('--idx', type=int, default=0, help="GUI height")
parser.add_argument('--config', default='configs/navi.yaml', type=str, help='Path to config directory, which contains image.yaml')
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
data = camera_data
cameras = [CustomCamera(cam_params) for cam_params in data.values()]
cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
img_paths = [v["filepath"] for k, v in data.items()]
opt.mesh = mesh_path
opt.trainable_texture = False
renderer = Renderer(opt).to(torch.device("cuda"))
lpips_loss = LPIPS(net='vgg').cuda()
mse_losses = []
lpips_losses = []
flags = [int(v["flag"]) for k, v in data.items()]
images = np.zeros((2, num_views, 256, 256, 3), dtype=np.uint8)
for i in tqdm.tqdm(range(len(cams))):
img_path = img_paths[i]
img = Image.open(img_path)
if img.mode == 'RGBA':
img = np.asarray(img, dtype=np.uint8).copy()
img[img[:, :, -1] <= 255*0.9] = [255., 255., 255., 255.] # thresholding background
img = img[:, :, :3]
gt_tensor = torch.from_numpy(img).permute(2, 0, 1).float().unsqueeze(0).cuda() / 255.0
images[0, i] = img
with torch.no_grad():
out = renderer.render(*cams[i][:2], 256, 256, ssaa=1)
# rgb loss
image = (out["image"].detach().cpu().numpy() * 255).astype(np.uint8)
pred_tensor = out["image"].permute(2, 0, 1).float().unsqueeze(0).cuda()
# obj_scale = ((out["alpha"] > 0) & (out["viewcos"] > 0.5)).detach().sum().float()
obj_scale = (out["alpha"] > 0).detach().sum().float()
obj_scale /= 256 ** 2
images[1, i] = image
with torch.no_grad():
mse_losses.append(F.mse_loss(pred_tensor, gt_tensor).squeeze().cpu().numpy() / obj_scale.item())
lpips_losses.append(lpips_loss(pred_tensor, gt_tensor).squeeze().cpu().numpy() / obj_scale.item())
mean_mse = np.mean(np.array(mse_losses)[:num_views])
mean_lpips = np.mean(np.array(lpips_losses)[:num_views])
num_frames = 2 * num_views
cmap = plt.get_cmap("hsv")
num_rows = 2
num_cols = num_views
plt.subplots_adjust(top=0.2)
figsize = (num_cols * 2, num_rows * 2.2)
fig, axs = plt.subplots(num_rows, num_cols, figsize=figsize)
fig.suptitle(f"Avg MSE: {mean_mse:.4f}, Avg LPIPS: {mean_lpips:.4f}", fontsize=16, y=0.97)
axs = axs.flatten()
for i in range(num_rows * num_cols):
if i < num_frames:
axs[i].imshow(images.reshape(-1, 256, 256, 3)[i])
for s in ["bottom", "top", "left", "right"]:
if i % num_views <= num_views - 1:
if not flags[i%num_views]:
axs[i].spines[s].set_color("red")
else:
axs[i].spines[s].set_color("green")
else:
axs[i].spines[s].set_color(cmap(i / (num_frames)))
axs[i].spines[s].set_linewidth(5)
axs[i].set_xticks([])
axs[i].set_yticks([])
if i >= num_views:
axs[i].set_xlabel(f'MSE: {mse_losses[i%num_views]:.4f}\nLPIPS: {lpips_losses[i%num_views]:.4f}', fontsize=10)
else:
axs[i].axis("off")
plt.tight_layout()
plt.savefig(save_path)
plt.close(fig)
print(f"Visualization file written to {save_path}")
out_dir = save_path.replace('vis.png', 'reprojections')
os.makedirs(out_dir, exist_ok=True)
for i in range(num_views):
gt = Image.fromarray(images[0, i])
pred = Image.fromarray(images[1, i])
gt.save(os.path.join(out_dir, f"gt_{i}.png"))
pred.save(os.path.join(out_dir, f"pred_{i}.png"))
return np.array(lpips_losses), np.array(mse_losses)