SparseAGS / liegroups /tests /torch /test_so2_torch.py
qitaoz's picture
init commit
26ce2a9 verified
import copy
import torch
import numpy as np
from liegroups.torch import SO2, utils
def test_from_matrix():
C_good = SO2.from_matrix(torch.eye(2))
assert isinstance(C_good, SO2) \
and C_good.mat.dim() == 2 \
and C_good.mat.shape == (2, 2) \
and SO2.is_valid_matrix(C_good.mat).all()
C_bad = SO2.from_matrix(torch.eye(2).add_(1e-3), normalize=True)
assert isinstance(C_bad, SO2) \
and C_bad.mat.dim() == 2 \
and C_bad.mat.shape == (2, 2) \
and SO2.is_valid_matrix(C_bad.mat).all()
def test_from_matrix_batch():
C_good = SO2.from_matrix(torch.eye(2).repeat(5, 1, 1))
assert isinstance(C_good, SO2) \
and C_good.mat.dim() == 3 \
and C_good.mat.shape == (5, 2, 2) \
and SO2.is_valid_matrix(C_good.mat).all()
C_bad = copy.deepcopy(C_good.mat)
C_bad[3].add_(0.1)
C_bad = SO2.from_matrix(C_bad, normalize=True)
assert isinstance(C_bad, SO2) \
and C_bad.mat.dim() == 3 \
and C_bad.mat.shape == (5, 2, 2) \
and SO2.is_valid_matrix(C_bad.mat).all()
def test_identity():
C = SO2.identity()
assert isinstance(C, SO2) \
and C.mat.dim() == 2 \
and C.mat.shape == (2, 2)
def test_identity_batch():
C = SO2.identity(5)
assert isinstance(C, SO2) \
and C.mat.dim() == 3 \
and C.mat.shape == (5, 2, 2)
C_copy = SO2.identity(5, copy=True)
assert isinstance(C_copy, SO2) \
and C_copy.mat.dim() == 3 \
and C_copy.mat.shape == (5, 2, 2)
def test_from_angle_to_angle():
angle = torch.Tensor([np.pi / 2.])
assert utils.allclose(SO2.from_angle(angle).to_angle(), angle)
def test_from_angle_to_angle_batch():
angles = torch.Tensor([-1., 0, 1.])
assert utils.allclose(SO2.from_angle(angles).to_angle(), angles)
def test_dot():
C = SO2(torch.Tensor([[0, -1],
[1, 0]]))
pt = torch.Tensor([1, 2])
CC = C.mat.mm(C.mat)
assert utils.allclose(C.dot(C).mat, CC)
Cpt = C.mat.matmul(pt)
assert utils.allclose(C.dot(pt), Cpt)
def test_dot_batch():
C1 = SO2(torch.Tensor([[0, -1],
[1, 0]]).expand(5, 2, 2))
C2 = SO2(torch.Tensor([[-1, 0],
[0, -1]]))
pt1 = torch.Tensor([1, 2])
pt2 = torch.Tensor([4, 5])
pt3 = torch.Tensor([7, 8])
pts = torch.cat([pt1.unsqueeze(dim=0),
pt2.unsqueeze(dim=0),
pt3.unsqueeze(dim=0)], dim=0) # 3x2
ptsbatch = pts.unsqueeze(dim=0).expand(5, 3, 2)
C1C1 = torch.bmm(C1.mat, C1.mat)
C1C1_SO2 = C1.dot(C1).mat
assert C1C1_SO2.shape == C1.mat.shape and utils.allclose(C1C1_SO2, C1C1)
C1C2 = torch.matmul(C1.mat, C2.mat)
C1C2_SO2 = C1.dot(C2).mat
assert C1C2_SO2.shape == C1.mat.shape and utils.allclose(C1C2_SO2, C1C2)
C1pt1 = torch.matmul(C1.mat, pt1)
C1pt1_SO2 = C1.dot(pt1)
assert C1pt1_SO2.shape == (C1.mat.shape[0], pt1.shape[0]) \
and utils.allclose(C1pt1_SO2, C1pt1)
C1pt2 = torch.matmul(C1.mat, pt2)
C1pt2_SO2 = C1.dot(pt2)
assert C1pt2_SO2.shape == (C1.mat.shape[0], pt2.shape[0]) \
and utils.allclose(C1pt2_SO2, C1pt2)
C1pts = torch.matmul(C1.mat, pts.transpose(1, 0)).transpose(2, 1)
C1pts_SO2 = C1.dot(pts)
assert C1pts_SO2.shape == (C1.mat.shape[0], pts.shape[0], pts.shape[1]) \
and utils.allclose(C1pts_SO2, C1pts) \
and utils.allclose(C1pt1, C1pts[:, 0, :]) \
and utils.allclose(C1pt2, C1pts[:, 1, :])
C1ptsbatch = torch.bmm(C1.mat, ptsbatch.transpose(2, 1)).transpose(2, 1)
C1ptsbatch_SO2 = C1.dot(ptsbatch)
assert C1ptsbatch_SO2.shape == ptsbatch.shape \
and utils.allclose(C1ptsbatch_SO2, C1ptsbatch) \
and utils.allclose(C1pt1, C1ptsbatch[:, 0, :]) \
and utils.allclose(C1pt2, C1ptsbatch[:, 1, :])
C2ptsbatch = torch.matmul(C2.mat, ptsbatch.transpose(2, 1)).transpose(2, 1)
C2ptsbatch_SO2 = C2.dot(ptsbatch)
assert C2ptsbatch_SO2.shape == ptsbatch.shape \
and utils.allclose(C2ptsbatch_SO2, C2ptsbatch) \
and utils.allclose(C2.dot(pt1), C2ptsbatch[:, 0, :]) \
and utils.allclose(C2.dot(pt2), C2ptsbatch[:, 1, :])
def test_wedge():
phi = torch.Tensor([1])
Phi = SO2.wedge(phi)
assert (Phi == -Phi.t()).all()
def test_wedge_batch():
phis = torch.Tensor([1, 2])
Phis = SO2.wedge(phis)
assert (Phis[0, :, :] == SO2.wedge(torch.Tensor([phis[0]]))).all()
assert (Phis[1, :, :] == SO2.wedge(torch.Tensor([phis[1]]))).all()
def test_wedge_vee():
phi = torch.Tensor([1])
Phi = SO2.wedge(phi)
assert (phi == SO2.vee(Phi)).all()
def test_wedge_vee_batch():
phis = torch.Tensor([1, 2])
Phis = SO2.wedge(phis)
assert (phis == SO2.vee(Phis)).all()
def test_left_jacobians():
phi_small = torch.Tensor([0.])
phi_big = torch.Tensor([np.pi / 2])
left_jacobian_small = SO2.left_jacobian(phi_small)
inv_left_jacobian_small = SO2.inv_left_jacobian(phi_small)
assert utils.allclose(
torch.mm(left_jacobian_small, inv_left_jacobian_small),
torch.eye(2))
left_jacobian_big = SO2.left_jacobian(phi_big)
inv_left_jacobian_big = SO2.inv_left_jacobian(phi_big)
assert utils.allclose(
torch.mm(left_jacobian_big, inv_left_jacobian_big),
torch.eye(2))
def test_left_jacobians_batch():
phis = torch.Tensor([0., np.pi / 2])
left_jacobian = SO2.left_jacobian(phis)
inv_left_jacobian = SO2.inv_left_jacobian(phis)
assert utils.allclose(torch.bmm(left_jacobian, inv_left_jacobian),
torch.eye(2).unsqueeze_(dim=0).expand(2, 2, 2))
def test_exp_log():
C_big = SO2.exp(torch.Tensor([np.pi / 4]))
assert utils.allclose(SO2.exp(SO2.log(C_big)).mat, C_big.mat)
C_small = SO2.exp(torch.Tensor([0]))
assert utils.allclose(SO2.exp(SO2.log(C_small)).mat, C_small.mat)
def test_exp_log_batch():
C = SO2.exp(torch.Tensor([-1., 0., 1.]))
assert utils.allclose(SO2.exp(SO2.log(C)).mat, C.mat)
def test_perturb():
C = SO2.exp(torch.Tensor([np.pi / 4]))
C_copy = copy.deepcopy(C)
phi = torch.Tensor([0.1])
C.perturb(phi)
assert utils.allclose(
C.as_matrix(), (SO2.exp(phi).dot(C_copy)).as_matrix())
def test_perturb_batch():
C = SO2.exp(torch.Tensor([-1., 0., 1.]))
C_copy1 = copy.deepcopy(C)
C_copy2 = copy.deepcopy(C)
phi = torch.Tensor([0.1])
C_copy1.perturb(phi)
assert utils.allclose(C_copy1.as_matrix(),
(SO2.exp(phi).dot(C)).as_matrix())
phis = torch.Tensor([0.1, 0.2, 0.3])
C_copy2.perturb(phis)
assert utils.allclose(C_copy2.as_matrix(),
(SO2.exp(phis).dot(C)).as_matrix())
def test_normalize():
C = SO2.exp(torch.Tensor([np.pi / 4]))
C.mat.add_(0.1)
C.normalize()
assert SO2.is_valid_matrix(C.mat).all()
def test_normalize_batch():
C = SO2.exp(torch.Tensor([-1., 0., 1.]))
assert SO2.is_valid_matrix(C.mat).all()
C.mat.add_(0.1)
assert (SO2.is_valid_matrix(C.mat) == torch.ByteTensor([0, 0, 0])).all()
C.normalize(inds=[0, 2])
assert (SO2.is_valid_matrix(C.mat) == torch.ByteTensor([1, 0, 1])).all()
C.normalize()
assert SO2.is_valid_matrix(C.mat).all()
def test_inv():
C = SO2.exp(torch.Tensor([np.pi / 4]))
assert utils.allclose(C.dot(C.inv()).mat, SO2.identity().mat)
def test_inv_batch():
C = SO2.exp(torch.Tensor([-1., 0., 1.]))
assert utils.allclose(C.dot(C.inv()).mat, SO2.identity(C.mat.shape[0]).mat)
def test_adjoint():
C = SO2.exp(torch.Tensor([np.pi / 4]))
assert (C.adjoint() == torch.Tensor([1.])).all()
def test_adjoint_batch():
C = SO2.exp(torch.Tensor([-1., 0., 1.]))
assert (C.adjoint() == torch.ones(C.mat.shape[0])).all()