Spaces:
Build error
Build error
File size: 40,116 Bytes
60840ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 |
import functools as ft
import os
import random
import re
from collections import defaultdict
from datetime import datetime, timedelta
from pathlib import Path
import h5py
import numpy as np
import pandas as pd
import torch
from torch import Tensor
from torch.utils.data import Dataset
def preproc(batch: list[dict], padding: dict[tuple[int]]) -> dict[str, Tensor]:
"""Prepressing function for MERRA2 Dataset
Args:
batch (dict): List of training samples, each sample should be a
dictionary with the following keys::
'sur_static': Numpy array of shape (3, lat, lon). For each pixel (lat, lon), the first dimension indexes sin(lat), cos(lon), sin(lon).
'sur_vals': Torch tensor of shape (parameter, time, lat, lon).
'sur_tars': Torch tensor of shape (parameter, time, lat, lon).
'ulv_vals': Torch tensor of shape (parameter, level, time, lat, lon).
'ulv_tars': Torch tensor of shape (parameter, level, time, lat, lon).
'sur_climate': Torch tensor of shape (parameter, lat, lon)
'ulv_climate': Torch tensor of shape (parameter, level, lat, lon)
'lead_time': Integer.
'input_time': Integer.
padding: Dictionary with keys 'level', 'lat', 'lon', each of dim 2.
Returns:
Dictionary with the following keys::
'x': [batch, time, parameter, lat, lon]
'y': [batch, parameter, lat, lon]
'static': [batch, parameter, lat, lon]
'lead_time': [batch]
'input_time': [batch]
'climate (Optional)': [batch, parameter, lat, lon]
Note:
Here, for x and y, 'parameter' is [surface parameter, upper level,
parameter x level]. Similarly for the static information we have
[sin(lat), cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod),
...].
""" # noqa: E501
b0 = batch[0]
nbatch = len(batch)
data_keys = set(b0.keys())
essential_keys = {
"sur_static",
"sur_vals",
"sur_tars",
"ulv_vals",
"ulv_tars",
"input_time",
"lead_time",
}
climate_keys = {
"sur_climate",
"ulv_climate",
}
all_keys = essential_keys | climate_keys
if not essential_keys.issubset(data_keys):
raise ValueError("Missing essential keys.")
if not data_keys.issubset(all_keys):
raise ValueError("Unexpected keys in batch.")
# Bring all tensors from the batch into a single tensor
upl_x = torch.empty((nbatch, *b0["ulv_vals"].shape))
upl_y = torch.empty((nbatch, *b0["ulv_tars"].shape))
sur_x = torch.empty((nbatch, *b0["sur_vals"].shape))
sur_y = torch.empty((nbatch, *b0["sur_tars"].shape))
sur_sta = torch.empty((nbatch, *b0["sur_static"].shape))
lead_time = torch.empty((nbatch,), dtype=torch.float32)
input_time = torch.empty((nbatch,), dtype=torch.float32)
for i, rec in enumerate(batch):
sur_x[i] = rec["sur_vals"]
sur_y[i] = rec["sur_tars"]
upl_x[i] = rec["ulv_vals"]
upl_y[i] = rec["ulv_tars"]
sur_sta[i] = rec["sur_static"]
lead_time[i] = rec["lead_time"]
input_time[i] = rec["input_time"]
return_value = {
"lead_time": lead_time,
"input_time": input_time,
}
# Reshape (batch, parameter, level, time, lat, lon) ->
# (batch, time, parameter, level, lat, lon)
upl_x = upl_x.permute((0, 3, 1, 2, 4, 5))
upl_y = upl_y.permute((0, 3, 1, 2, 4, 5))
# Reshape (batch, parameter, time, lat, lon) ->
# (batch, time, parameter, lat, lon)
sur_x = sur_x.permute((0, 2, 1, 3, 4))
sur_y = sur_y.permute((0, 2, 1, 3, 4))
# Pad
padding_2d = (*padding["lon"], *padding["lat"])
def pad2d(x):
return torch.nn.functional.pad(x, padding_2d, mode="constant", value=0)
padding_3d = (*padding["lon"], *padding["lat"], *padding["level"])
def pad3d(x):
return torch.nn.functional.pad(x, padding_3d, mode="constant", value=0)
sur_x = pad2d(sur_x).contiguous()
upl_x = pad3d(upl_x).contiguous()
sur_y = pad2d(sur_y).contiguous()
upl_y = pad3d(upl_y).contiguous()
return_value["static"] = pad2d(sur_sta).contiguous()
# Remove time for targets
upl_y = torch.squeeze(upl_y, 1)
sur_y = torch.squeeze(sur_y, 1)
# We stack along the combined parameter x level dimension
return_value["x"] = torch.cat(
(sur_x, upl_x.view(*upl_x.shape[:2], -1, *upl_x.shape[4:])), dim=2
)
return_value["y"] = torch.cat(
(sur_y, upl_y.view(upl_y.shape[0], -1, *upl_y.shape[3:])), dim=1
)
if climate_keys.issubset(data_keys):
sur_climate = torch.empty((nbatch, *b0["sur_climate"].shape))
ulv_climate = torch.empty((nbatch, *b0["ulv_climate"].shape))
for i, rec in enumerate(batch):
sur_climate[i] = rec["sur_climate"]
ulv_climate[i] = rec["ulv_climate"]
sur_climate = pad2d(sur_climate)
ulv_climate = pad3d(ulv_climate)
return_value["climate"] = torch.cat(
(
sur_climate,
ulv_climate.view(nbatch, -1, *ulv_climate.shape[3:]),
),
dim=1,
)
return return_value
def input_scalers(
surf_vars: list[str],
vert_vars: list[str],
levels: list[float],
surf_path: str | Path,
vert_path: str | Path,
) -> tuple[Tensor, Tensor]:
"""Reads the input scalers
Args:
surf_vars: surface variables to be used.
vert_vars: vertical variables to be used.
levels: MERRA2 levels to use.
surf_path: path to surface scalers file.
vert_path: path to vertical level scalers file.
Returns:
mu (Tensor): mean values
var (Tensor): varience values
"""
with h5py.File(Path(surf_path), "r", libver="latest") as surf_file:
stats = [x.decode().lower() for x in surf_file["statistic"][()]]
mu_idx = stats.index("mu")
sig_idx = stats.index("sigma")
s_mu = torch.tensor([surf_file[k][()][mu_idx] for k in surf_vars])
s_sig = torch.tensor([surf_file[k][()][sig_idx] for k in surf_vars])
with h5py.File(Path(vert_path), "r", libver="latest") as vert_file:
stats = [x.decode().lower() for x in vert_file["statistic"][()]]
mu_idx = stats.index("mu")
sig_idx = stats.index("sigma")
lvl = vert_file["lev"][()]
l_idx = [np.where(lvl == v)[0].item() for v in levels]
v_mu = np.array([vert_file[k][()][mu_idx, l_idx] for k in vert_vars])
v_sig = np.array([vert_file[k][()][sig_idx, l_idx] for k in vert_vars])
v_mu = torch.from_numpy(v_mu).view(-1)
v_sig = torch.from_numpy(v_sig).view(-1)
mu = torch.cat((s_mu, v_mu), dim=0).to(torch.float32)
sig = torch.cat((s_sig, v_sig), dim=0).to(torch.float32).clamp(1e-4, 1e4)
return mu, sig
def static_input_scalers(
scalar_path: str | Path, stat_vars: list[str], unscaled_params: int = 7
) -> tuple[Tensor, Tensor]:
scalar_path = Path(scalar_path)
with h5py.File(scalar_path, "r", libver="latest") as scaler_file:
stats = [x.decode().lower() for x in scaler_file["statistic"][()]]
mu_idx = stats.index("mu")
sig_idx = stats.index("sigma")
mu = torch.tensor([scaler_file[k][()][mu_idx] for k in stat_vars])
sig = torch.tensor([scaler_file[k][()][sig_idx] for k in stat_vars])
z = torch.zeros(unscaled_params, dtype=mu.dtype, device=mu.device)
o = torch.ones(unscaled_params, dtype=sig.dtype, device=sig.device)
mu = torch.cat((z, mu), dim=0).to(torch.float32)
sig = torch.cat((o, sig), dim=0).to(torch.float32)
return mu, sig.clamp(1e-4, 1e4)
def output_scalers(
surf_vars: list[str],
vert_vars: list[str],
levels: list[float],
surf_path: str | Path,
vert_path: str | Path,
) -> Tensor:
surf_path = Path(surf_path)
vert_path = Path(vert_path)
with h5py.File(surf_path, "r", libver="latest") as surf_file:
svars = torch.tensor([surf_file[k][()] for k in surf_vars])
with h5py.File(vert_path, "r", libver="latest") as vert_file:
lvl = vert_file["lev"][()]
l_idx = [np.where(lvl == v)[0].item() for v in levels]
vvars = np.array([vert_file[k][()][l_idx] for k in vert_vars])
vvars = torch.from_numpy(vvars).view(-1)
var = torch.cat((svars, vvars), dim=0).to(torch.float32).clamp(1e-7, 1e7)
return var
class SampleSpec:
"""
A data class to collect the information used to define a sample.
"""
def __init__(
self,
inputs: tuple[pd.Timestamp, pd.Timestamp],
lead_time: int,
target: pd.Timestamp | list[pd.Timestamp],
):
"""
Args:
inputs: Tuple of timestamps. In ascending order.
lead_time: Lead time. In hours.
target: Timestamp of the target. Can be before or after the inputs.
"""
if not inputs[0] < inputs[1]:
raise ValueError(
"Timestamps in `inputs` should be in strictly ascending order."
)
self.inputs = inputs
self.input_time = (inputs[1] - inputs[0]).total_seconds() / 3600
self.lead_time = lead_time
self.target = target
self.times = [*inputs, target]
self.stat_times = [inputs[-1]]
@property
def climatology_info(self) -> tuple[int, int]:
"""Get the required climatology info.
:return: information required to obtain climatology data. Essentially
this is the day of the year and hour of the day of the target
timestamp, with the former restricted to the interval [1, 365].
:rtype: tuple
"""
return (min(self.target.dayofyear, 365), self.target.hour)
@property
def year(self) -> int:
return self.inputs[1].year
@property
def dayofyear(self) -> int:
return self.inputs[1].dayofyear
@property
def hourofday(self) -> int:
return self.inputs[1].hour
def _info_str(self) -> str:
iso_8601 = "%Y-%m-%dT%H:%M:%S"
return (
f"Issue time: {self.inputs[1].strftime(iso_8601)}\n"
f"Lead time: {self.lead_time} hours ahead\n"
f"Input delta: {self.input_time} hours\n"
f"Target time: {self.target.strftime(iso_8601)}"
)
@classmethod
def get(cls, timestamp: pd.Timestamp, dt: int, lead_time: int):
"""Given a timestamp and lead time, generates a SampleSpec object
describing the sample further.
Args:
timestamp: Timstamp of the sample, Ie this is the larger of the two
input timstamps.
dt: Time between input samples, in hours.
lead_time: Lead time. In hours.
Returns:
SampleSpec
""" # noqa: E501
assert dt > 0, "dt should be possitive"
lt = pd.to_timedelta(lead_time, unit="h")
dt = pd.to_timedelta(dt, unit="h")
if lead_time >= 0:
timestamp_target = timestamp + lt
else:
timestamp_target = timestamp - dt + lt
spec = cls(
inputs=(timestamp - dt, timestamp),
lead_time=lead_time,
target=timestamp_target,
)
return spec
def __repr__(self) -> str:
return self._info_str()
def __str__(self) -> str:
return self._info_str()
class Merra2Dataset(Dataset):
"""MERRA2 dataset. The dataset unifies surface and vertical data as well as
optional climatology.
Samples come in the form of a dictionary. Not all keys support all
variables, yet the general ordering of dimensions is
parameter, level, time, lat, lon
Note:
Data is assumed to be in NetCDF files containing daily data at 3-hourly
intervals. These follow the naming patterns
MERRA2_sfc_YYYYMMHH.nc and MERRA_pres_YYYYMMHH.nc and can be located in
two different locations. Optional climatology data comes from files
climate_surface_doyDOY_hourHOD.nc and
climate_vertical_doyDOY_hourHOD.nc.
Note:
`_get_valid_timestamps` assembles a set of all timestamps for which
there is data (with hourly resolutions). The result is stored in
`_valid_timestamps`. `_get_valid_climate_timestamps` does the same with
climatology data and stores it in `_valid_climate_timestamps`.
Based on this information, `samples` generates a list of valid samples,
stored in `samples`. Here the format is::
[
[
(timestamp 1, lead time A),
(timestamp 1, lead time B),
(timestamp 1, lead time C),
],
[
(timestamp 2, lead time D),
(timestamp 2, lead time E),
]
]
That is, the outer list iterates over timestamps (init times), the
inner over lead times. Only valid entries are stored.
"""
valid_vertical_vars = [
"CLOUD",
"H",
"OMEGA",
"PL",
"QI",
"QL",
"QV",
"T",
"U",
"V",
]
valid_surface_vars = [
"EFLUX",
"GWETROOT",
"HFLUX",
"LAI",
"LWGAB",
"LWGEM",
"LWTUP",
"PRECTOT",
"PS",
"QV2M",
"SLP",
"SWGNT",
"SWTNT",
"T2M",
"TQI",
"TQL",
"TQV",
"TS",
"U10M",
"V10M",
"Z0M",
]
valid_static_surface_vars = ["FRACI", "FRLAND", "FROCEAN", "PHIS"]
valid_levels = [
34.0,
39.0,
41.0,
43.0,
44.0,
45.0,
48.0,
51.0,
53.0,
56.0,
63.0,
68.0,
71.0,
72.0,
]
timedelta_input = pd.to_timedelta(3, unit="h")
def __init__(
self,
time_range: tuple[str | pd.Timestamp, str | pd.Timestamp],
lead_times: list[int],
input_times: list[int],
data_path_surface: str | Path,
data_path_vertical: str | Path,
climatology_path_surface: str | Path | None = None,
climatology_path_vertical: str | Path | None = None,
surface_vars: list[str] | None = None,
static_surface_vars: list[str] | None = None,
vertical_vars: list[str] | None = None,
levels: list[float] | None = None,
roll_longitudes: int = 0,
positional_encoding: str = "absolute",
rtype: type = np.float32,
dtype: torch.dtype = torch.float32,
) -> None:
"""
Args:
data_path_surface: Location of surface data.
data_path_vertical: Location of vertical data.
climatology_path_surface: Location of (optional) surface
climatology.
climatology_path_vertical: Location of (optional) vertical
climatology.
surface_vars: Surface variables.
static_surface_vars: Static surface variables.
vertical_vars: Vertical variables.
levels: Levels.
time_range: Used to subset data.
lead_times: Lead times for generalized forecasting.
roll_longitudes: Set to non-zero value to data by random amount
along longitude dimension.
position_encoding: possible values are
['absolute' (default), 'fourier'].
'absolute' returns lat lon encoded in 3 dimensions using sine
and cosine
'fourier' returns lat/lon to be encoded by model
<any other key> returns lat/lon to be encoded by model
rtype: numpy data type used during read
dtype: torch data type of data output
"""
self.time_range = (
pd.to_datetime(time_range[0]),
pd.to_datetime(time_range[1]),
)
self.lead_times = lead_times
self.input_times = input_times
self._roll_longitudes = list(range(roll_longitudes + 1))
self._uvars = vertical_vars or self.valid_vertical_vars
self._level = levels or self.valid_levels
self._svars = surface_vars or self.valid_surface_vars
self._sstat = static_surface_vars or self.valid_static_surface_vars
self._nuvars = len(self._uvars)
self._nlevel = len(self._level)
self._nsvars = len(self._svars)
self._nsstat = len(self._sstat)
self.rtype = rtype
self.dtype = dtype
self.positional_encoding = positional_encoding
self._data_path_surface = Path(data_path_surface)
self._data_path_vertical = Path(data_path_vertical)
self.dir_exists(self._data_path_surface)
self.dir_exists(self._data_path_vertical)
self._get_coordinates()
self._climatology_path_surface = Path(climatology_path_surface) or None
self._climatology_path_vertical = (
Path(climatology_path_vertical) or None
)
self._require_clim = (
self._climatology_path_surface is not None
and self._climatology_path_vertical is not None
)
if self._require_clim:
self.dir_exists(self._climatology_path_surface)
self.dir_exists(self._climatology_path_vertical)
elif (
climatology_path_surface is None
and climatology_path_vertical is None
):
self._climatology_path_surface = None
self._climatology_path_vertical = None
else:
raise ValueError(
"Either both or neither of"
"`climatology_path_surface` and"
"`climatology_path_vertical` should be None."
)
if not set(self._svars).issubset(set(self.valid_surface_vars)):
raise ValueError("Invalid surface variable.")
if not set(self._sstat).issubset(set(self.valid_static_surface_vars)):
raise ValueError("Invalid static surface variable.")
if not set(self._uvars).issubset(set(self.valid_vertical_vars)):
raise ValueError("Inalid vertical variable.")
if not set(self._level).issubset(set(self.valid_levels)):
raise ValueError("Invalid level.")
@staticmethod
def dir_exists(path: Path) -> None:
if not path.is_dir():
raise ValueError(f"Directory {path} does not exist.")
@property
def upper_shape(self) -> tuple:
"""Returns the vertical variables shape
Returns:
tuple: vertical variable shape in the following order::
[VAR, LEV, TIME, LAT, LON]
"""
return self._nuvars, self._nlevel, 2, 361, 576
@property
def surface_shape(self) -> tuple:
"""Returns the surface variables shape
Returns:
tuple: surafce shape in the following order::
[VAR, LEV, TIME, LAT, LON]
"""
return self._nsvars, 2, 361, 576
def data_file_surface(self, timestamp: pd.Timestamp) -> Path:
"""Build the surfcae data file name based on timestamp
Args:
timestamp: a timestamp
Returns:
Path: constructed path
"""
pattern = "MERRA2_sfc_%Y%m%d.nc"
data_file = self._data_path_surface / timestamp.strftime(pattern)
return data_file
def data_file_vertical(self, timestamp: pd.Timestamp) -> Path:
"""Build the vertical data file name based on timestamp
Args:
timestamp: a timestamp
Returns:
Path: constructed path
"""
pattern = "MERRA_pres_%Y%m%d.nc"
data_file = self._data_path_vertical / timestamp.strftime(pattern)
return data_file
def data_file_surface_climate(
self,
timestamp: pd.Timestamp | None = None,
dayofyear: int | None = None,
hourofday: int | None = None,
) -> Path:
"""
Returns the path to a climatology file based either on a timestamp or
the dayofyear / hourofday combination.
Args:
timestamp: A timestamp.
dayofyear: Day of the year. 1 to 366.
hourofday: Hour of the day. 0 to 23.
Returns:
Path: Path to climatology file.
"""
if timestamp is not None and (
(dayofyear is not None) or (hourofday is not None)
):
raise ValueError(
"Provide either timestamp or both dayofyear and hourofday."
)
if timestamp is not None:
dayofyear = min(timestamp.dayofyear, 365)
hourofday = timestamp.hour
file_name = f"climate_surface_doy{dayofyear:03}_hour{hourofday:02}.nc"
data_file = self._climatology_path_surface / file_name
return data_file
def data_file_vertical_climate(
self,
timestamp: pd.Timestamp | None = None,
dayofyear: int | None = None,
hourofday: int | None = None,
) -> Path:
"""Returns the path to a climatology file based either on a timestamp
or the dayofyear / hourofday combination.
Args:
timestamp: A timestamp. dayofyear: Day of the year. 1 to 366.
hourofday: Hour of the day. 0 to 23.
Returns:
Path: Path to climatology file.
"""
if timestamp is not None and (
(dayofyear is not None) or (hourofday is not None)
):
raise ValueError(
"Provide either timestamp or both dayofyear and hourofday."
)
if timestamp is not None:
dayofyear = min(timestamp.dayofyear, 365)
hourofday = timestamp.hour
file_name = f"climate_vertical_doy{dayofyear:03}_hour{hourofday:02}.nc"
data_file = self._climatology_path_vertical / file_name
return data_file
def _get_coordinates(self) -> None:
"""
Obtains the coordiantes (latitudes and longitudes) from a single data
file.
"""
timestamp = next(iter(self.valid_timestamps))
file = self.data_file_surface(timestamp)
with h5py.File(file, "r", libver="latest") as handle:
self.lats = lats = handle["lat"][()].astype(self.rtype)
self.lons = lons = handle["lon"][()].astype(self.rtype)
deg_to_rad = np.pi / 180
self._embed_lat = np.sin(lats * deg_to_rad).reshape(-1, 1)
self._embed_lon = np.empty((2, 1, len(lons)), dtype=self.rtype)
self._embed_lon[0, 0] = np.cos(lons * deg_to_rad)
self._embed_lon[1, 0] = np.sin(lons * deg_to_rad)
@ft.cached_property
def lats(self) -> np.ndarray:
timestamp = next(iter(self.valid_timestamps))
file = self.data_file_surface(timestamp)
with h5py.File(file, "r", libver="latest") as handle:
return handle["lat"][()].astype(self.rtype)
@ft.cached_property
def lons(self) -> np.ndarray:
timestamp = next(iter(self.valid_timestamps))
file = self.data_file_surface(timestamp)
with h5py.File(file, "r", libver="latest") as handle:
return handle["lon"][()].astype(self.rtype)
@ft.cached_property
def position_signal(self) -> np.ndarray:
"""Generates the "position signal" that is part of the static
features.
Returns:
Tensor: Torch tensor of dimension (parameter, lat, lon) containing
sin(lat), cos(lon), sin(lon).
"""
latitudes, longitudes = np.meshgrid(
self.lats, self.lons, indexing="ij"
)
if self.positional_encoding == "absolute":
latitudes = latitudes / 360 * 2.0 * np.pi
longitudes = longitudes / 360 * 2.0 * np.pi
sur_static = np.stack(
[np.sin(latitudes), np.cos(longitudes), np.sin(longitudes)],
axis=0,
)
else:
sur_static = np.stack([latitudes, longitudes], axis=0)
sur_static = sur_static.astype(self.rtype)
return sur_static
@ft.cached_property
def valid_timestamps(self) -> set[pd.Timestamp]:
"""Generates list of valid timestamps based on available files. Only
timestamps for which both surface and vertical information is available
are considered valid.
Returns:
list: list of timestamps
"""
s_glob = self._data_path_surface.glob("MERRA2_sfc_????????.nc")
s_files = [os.path.basename(f) for f in s_glob]
v_glob = self._data_path_surface.glob("MERRA_pres_????????.nc")
v_files = [os.path.basename(f) for f in v_glob]
s_re = re.compile(r"MERRA2_sfc_(\d{8}).nc\Z")
v_re = re.compile(r"MERRA_pres_(\d{8}).nc\Z")
fmt = "%Y%m%d"
s_times = {
(datetime.strptime(m[1], fmt))
for f in s_files
if (m := s_re.match(f))
}
v_times = {
(datetime.strptime(m[1], fmt))
for f in v_files
if (m := v_re.match(f))
}
times = s_times.intersection(v_times)
# Each file contains a day at 3 hour intervals
times = {
t + timedelta(hours=i) for i in range(0, 24, 3) for t in times
}
start_time, end_time = self.time_range
times = {pd.Timestamp(t) for t in times if start_time <= t <= end_time}
return times
@ft.cached_property
def valid_climate_timestamps(self) -> set[tuple[int, int]]:
"""Generates list of "timestamps" (dayofyear, hourofday) for which
climatology data is present. Only instances for which surface and
vertical data is available are considered valid.
Returns:
list: List of tuples describing valid climatology instances.
"""
if not self._require_clim:
return set()
s_glob = self._climatology_path_surface.glob(
"climate_surface_doy???_hour??.nc"
)
s_files = [os.path.basename(f) for f in s_glob]
v_glob = self._climatology_path_vertical.glob(
"climate_vertical_doy???_hour??.nc"
)
v_files = [os.path.basename(f) for f in v_glob]
s_re = re.compile(r"climate_surface_doy(\d{3})_hour(\d{2}).nc\Z")
v_re = re.compile(r"climate_vertical_doy(\d{3})_hour(\d{2}).nc\Z")
s_times = {
(int(m[1]), int(m[2])) for f in s_files if (m := s_re.match(f))
}
v_times = {
(int(m[1]), int(m[2])) for f in v_files if (m := v_re.match(f))
}
times = s_times.intersection(v_times)
return times
def _data_available(self, spec: SampleSpec) -> bool:
"""
Checks whether data is available for a given SampleSpec object. Does so
using the internal sets with available data previously constructed. Not
by checking the file system.
Args:
spec: SampleSpec object as returned by SampleSpec.get
Returns:
bool: if data is availability.
"""
valid = set(spec.times).issubset(self.valid_timestamps)
if self._require_clim:
sci = spec.climatology_info
ci = set(sci) if isinstance(sci, list) else set([sci]) # noqa: C405
valid &= ci.issubset(self.valid_climate_timestamps)
return valid
@ft.cached_property
def samples(self) -> list[tuple[pd.Timestamp, int, int]]:
"""
Generates list of all valid samlpes.
Returns:
list: List of tuples (timestamp, input time, lead time).
"""
valid_samples = []
dts = [(it, lt) for it in self.input_times for lt in self.lead_times]
for timestamp in sorted(self.valid_timestamps):
timestamp_samples = []
for it, lt in dts:
spec = SampleSpec.get(timestamp, -it, lt)
if self._data_available(spec):
timestamp_samples.append((timestamp, it, lt))
if timestamp_samples:
valid_samples.append(timestamp_samples)
return valid_samples
def _to_torch(
self,
data: dict[str, Tensor | list[Tensor]],
dtype: torch.dtype = torch.float32,
) -> dict[str, Tensor | list[Tensor]]:
out = {}
for k, v in data.items():
if isinstance(v, list):
out[k] = [torch.from_numpy(x).to(dtype) for x in v]
else:
out[k] = torch.from_numpy(v).to(dtype)
return out
def _lat_roll(
self, data: dict[str, Tensor | list[Tensor]], n: int
) -> dict[str, Tensor | list[Tensor]]:
out = {}
for k, v in data.items():
if isinstance(v, list):
out[k] = [torch.roll(x, shifts=n, dims=-1) for x in v]
else:
out[k] = torch.roll(v, shifts=n, dims=-1)
return out
def _read_static_data(
self, file: str | Path, doy: int, hod: int
) -> np.ndarray:
with h5py.File(file, "r", libver="latest") as handle:
lats_surf = handle["lat"]
lons_surf = handle["lon"]
nll = (len(lats_surf), len(lons_surf))
npos = len(self.position_signal)
ntime = 4
nstat = npos + ntime + self._nsstat
data = np.empty((nstat, *nll), dtype=self.rtype)
for i, key in enumerate(self._sstat, start=npos + ntime):
data[i] = handle[key][()].astype(dtype=self.rtype)
# [possition signal], cos(doy), sin(doy), cos(hod), sin(hod)
data[0:npos] = self.position_signal
data[npos + 0] = np.cos(2 * np.pi * doy / 366)
data[npos + 1] = np.sin(2 * np.pi * doy / 366)
data[npos + 2] = np.cos(2 * np.pi * hod / 24)
data[npos + 3] = np.sin(2 * np.pi * hod / 24)
return data
def _read_surface(
self, tidx: int, nll: tuple[int, int], handle: h5py.File
) -> np.ndarray:
data = np.empty((self._nsvars, *nll), dtype=self.rtype)
for i, key in enumerate(self._svars):
data[i] = handle[key][tidx][()].astype(dtype=self.rtype)
return data
def _read_levels(
self, tidx: int, nll: tuple[int, int], handle: h5py.File
) -> np.ndarray:
lvls = handle["lev"][()]
lidx = self._level_idxs(lvls)
data = np.empty((self._nuvars, self._nlevel, *nll), dtype=self.rtype)
for i, key in enumerate(self._uvars):
data[i] = handle[key][tidx, lidx][()].astype(dtype=self.rtype)
return np.ascontiguousarray(np.flip(data, axis=1))
def _level_idxs(self, lvls):
lidx = [np.argwhere(lvls == int(lvl)).item() for lvl in self._level]
return sorted(lidx)
@staticmethod
def _date_to_tidx(date: datetime | pd.Timestamp, handle: h5py.File) -> int:
if isinstance(date, pd.Timestamp):
date = date.to_pydatetime()
time = handle["time"]
t0 = time.attrs["begin_time"][()].item()
d0 = f"{time.attrs['begin_date'][()].item()}"
offset = datetime.strptime(d0, "%Y%m%d")
times = [offset + timedelta(minutes=int(t + t0)) for t in time[()]]
return times.index(date)
def _read_data(
self, file_pair: tuple[str, str], date: datetime
) -> dict[str, np.ndarray]:
s_file, v_file = file_pair
with h5py.File(s_file, "r", libver="latest") as shandle:
lats_surf = shandle["lat"]
lons_surf = shandle["lon"]
nll = (len(lats_surf), len(lons_surf))
tidx = self._date_to_tidx(date, shandle)
sdata = self._read_surface(tidx, nll, shandle)
with h5py.File(v_file, "r", libver="latest") as vhandle:
lats_vert = vhandle["lat"]
lons_vert = vhandle["lon"]
nll = (len(lats_vert), len(lons_vert))
tidx = self._date_to_tidx(date, vhandle)
vdata = self._read_levels(tidx, nll, vhandle)
data = {"vert": vdata, "surf": sdata}
return data
def _read_climate(
self, file_pair: tuple[str, str]
) -> dict[str, np.ndarray]:
s_file, v_file = file_pair
with h5py.File(s_file, "r", libver="latest") as shandle:
lats_surf = shandle["lat"]
lons_surf = shandle["lon"]
nll = (len(lats_surf), len(lons_surf))
sdata = np.empty((self._nsvars, *nll), dtype=self.rtype)
for i, key in enumerate(self._svars):
sdata[i] = shandle[key][()].astype(dtype=self.rtype)
with h5py.File(v_file, "r", libver="latest") as vhandle:
lats_vert = vhandle["lat"]
lons_vert = vhandle["lon"]
nll = (len(lats_vert), len(lons_vert))
lvls = vhandle["lev"][()]
lidx = self._level_idxs(lvls)
vdata = np.empty(
(self._nuvars, self._nlevel, *nll), dtype=self.rtype
)
for i, key in enumerate(self._uvars):
vdata[i] = vhandle[key][lidx][()].astype(dtype=self.rtype)
data = {
"vert": np.ascontiguousarray(np.flip(vdata, axis=1)),
"surf": sdata,
}
return data
def get_data_from_sample_spec(
self, spec: SampleSpec
) -> dict[str, Tensor | int | float]:
"""Loads and assembles sample data given a SampleSpec object.
Args:
spec (SampleSpec): Full details regarding the data to be loaded
Returns:
dict: Dictionary with the following keys::
'sur_static': Torch tensor of shape [parameter, lat, lon]. For
each pixel (lat, lon), the first 7 dimensions index sin(lat),
cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod).
Where doy is the day of the year [1, 366] and hod the hour of
the day [0, 23].
'sur_vals': Torch tensor of shape [parameter, time, lat, lon].
'sur_tars': Torch tensor of shape [parameter, time, lat, lon].
'ulv_vals': Torch tensor of shape [parameter, level, time, lat, lon].
'ulv_tars': Torch tensor of shape [parameter, level, time, lat, lon].
'sur_climate': Torch tensor of shape [parameter, lat, lon].
'ulv_climate': Torch tensor of shape [paramter, level, lat, lon].
'lead_time': Float.
'input_time': Float.
""" # noqa: E501
# We assemble the unique timestamps for which we need data.
vals_required = {*spec.times}
stat_required = {*spec.stat_times}
# We assemble the unique data files from which we need value data
vals_file_map = defaultdict(list)
for t in vals_required:
data_files = (
self.data_file_surface(t),
self.data_file_vertical(t),
)
vals_file_map[data_files].append(t)
# We assemble the unique data files from which we need static data
stat_file_map = defaultdict(list)
for t in stat_required:
data_files = (
self.data_file_surface(t),
self.data_file_vertical(t),
)
stat_file_map[data_files].append(t)
# Load the value data
data = {}
for data_files, times in vals_file_map.items():
for time in times:
data[time] = self._read_data(data_files, time)
# Combine times
sample_data = {}
input_upl = np.stack([data[t]["vert"] for t in spec.inputs], axis=2)
sample_data["ulv_vals"] = input_upl
target_upl = data[spec.target]["vert"]
sample_data["ulv_tars"] = target_upl[:, :, None]
input_sur = np.stack([data[t]["surf"] for t in spec.inputs], axis=1)
sample_data["sur_vals"] = input_sur
target_sur = data[spec.target]["surf"]
sample_data["sur_tars"] = target_sur[:, None]
# Load the static data
data_files, times = stat_file_map.popitem()
time = times[0].dayofyear, times[0].hour
sample_data["sur_static"] = self._read_static_data(
data_files[0], *time
)
# If required load the surface data
if self._require_clim:
ci_year, ci_hour = spec.climatology_info
surf_file = self.data_file_surface_climate(
dayofyear=ci_year,
hourofday=ci_hour,
)
vert_file = self.data_file_vertical_climate(
dayofyear=ci_year,
hourofday=ci_hour,
)
clim_data = self._read_climate((surf_file, vert_file))
sample_data["sur_climate"] = clim_data["surf"]
sample_data["ulv_climate"] = clim_data["vert"]
# Move the data from numpy to torch
sample_data = self._to_torch(sample_data, dtype=self.dtype)
# Optionally roll
if len(self._roll_longitudes) > 0:
roll_by = random.choice(self._roll_longitudes)
sample_data = self._lat_roll(sample_data, roll_by)
# Now that we have rolled, we can add the static data
sample_data["lead_time"] = spec.lead_time
sample_data["input_time"] = spec.input_time
return sample_data
def get_data(
self, timestamp: pd.Timestamp, input_time: int, lead_time: int
) -> dict[str, Tensor | int]:
"""
Loads data based on timestamp and lead time.
Args:
timestamp: Timestamp.
input_time: time between input samples.
lead_time: lead time.
Returns:
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
'lead_time'.
"""
spec = SampleSpec.get(timestamp, -input_time, lead_time)
sample_data = self.get_data_from_sample_spec(spec)
return sample_data
def __getitem__(self, idx: int) -> dict[str, Tensor | int]:
"""
Loads data based on sample index and random choice of sample.
Args:
idx: Sample index.
Returns:
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
'lead_time', 'input_time'.
"""
sample_set = self.samples[idx]
timestamp, input_time, lead_time, *nsteps = random.choice(sample_set)
sample_data = self.get_data(timestamp, input_time, lead_time)
return sample_data
def __len__(self):
return len(self.samples)
|